CA-IDMS®

IDD DDDL Reference
15.0

a)

Computer Associates™

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is
for the end user's informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

This documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part,
without the prior written consent of CA. This documentation is proprietary information of CA and protected by
the copyright laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this documentation for
their own internal use, provided that all CA copyright notices and legends are affixed to each reproduced copy.
Only authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of
the license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force
and effect. Should the license terminate for any reason, it shall be the user's responsibility to return to CA the
reproduced copies or to certify to CA that same have been destroyed.

To the extent permitted by applicable law, CA provides this documentation “as is’ without warranty of any kind,
including without limitation, any implied warranties of merchantability, fitness for a particular purpose or
noninfringement. In no event will CA be liable to the end user or any third party for any loss or damage, direct
or indirect, from the use of this documentation, including without limitation, lost profits, business interruption,
goodwill, or lost data, even if CA is expressly advised of such loss or damage.

The use of any product referenced in this documentation and this documentation is governed by the end user's
applicable license agreement.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights’ as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1)
and (2) or DFARS Section 252.227-7013(c)(1)(ii) or applicable successor provisions.

Second Edition, October 2001

© 2001 Computer Associates International, Inc.
All rights reserved.

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

Contents

How to Use ThisManual iX
Chapter 1. Coding Considerations 1-1
L1 Overview 1-3
12 Syntax format 1-5
1.3 Character set restrictions 1-8
14 Keywords and user-supplied names 1-10
15 Inputcolumnrange 1-11
1.6 Comment text, source statements, and edit instructions 1-12
161 Commenttext 1-12
16.2 Sourcestatements 1-13
16.3 Editingtructiontext 1-13
1.7 Batch considerations 1-14
1.7.1 User commentS 1-14
1.7.2 Carriage control statements 1-14
Chapter 2. DDDL Compiler Options 2-1
21 OVEIVIeW 2-3
22 SIGNON statement 2-4
23 SIGNOFF statement 2-7
24 SET OPTIONS statement 2-8
24.1 SET OPTIONSfunctions 2-8
242 SET OPTIONS syntax 29
2.4.3 SET OPTIONS defaults and overrides 2-29
24.4 SET OPTIONS security i 2-33
25 DISPLAY/PUNCH OPTIONS statement 2-34
26 INCLUDE statement, 2-36
27 COMMIT statement 2-38
Chapter 3. General DDDL Syntax Options 31
31 Overview ... 33
3.2 Identifying entity occurrences 34
321 NAMEclause 34
322 VERSION Clause 34
3.23 Additional qudifiers 3-6
3.3 Securing the dictionary 3-7
331 PREPARED/REVISED BY clause 3-8
332 AUTHORITY clause 39
333 USERcclause 3-10
334 PUBLICACCESSclause 3-13
3.4 Documenting entity occurrences 3-16
34.1 DESCRIPTION clause 3-16
342 COMMENTSc clause 317
343 TEXT clause 3-20
3.5 Copying and editing entity occurrences 3-22
351 SAMEASclause 3-22
352 COPY clause 3-24

Contents iii

353 EDIT clause 3-25

3.5.4 INSERT instruction of the EDIT clause 3-28
3.5.5 ERASE instruction of the EDIT clause 3-29
3.5.6 REPLACE ingtruction of the EDIT clause 3-29
3.5.7 LIST ingtruction of the EDIT clause 3-31
3.5.8 SEQUENCE instruction of the EDIT clause 331
3.5.9 SHOW ingtruction of the EDIT clause 3-32
3.6 Associating entity occurrences 3-33
3.6.1 Reational keys 3-34
3.6.2 Attribute/entity rlationships 3-38
3.7 Displaying entity occurrences 341
3.7.1 DISPLAY/PUNCH statement 3-42
3.7.2 DISPLAY/PUNCH ALL statement 344
3.7.3 WHERE clause (conditional expressions) 3-46
3.7.4 DISPLAY/PUNCH examples 3-51
Chapter 4. Entity-Type Syntax 4-1
A1 OVEIVIEW . . . 4-3
4.2 Considerations for syntax presentation 4-4
4.3 ATTRIBUTE 4-6
4.4 CLASS . . . 4-13
45 DESTINATION 4-18
4.6 ELEMENT 4-25
4.7 ELEMENT SYNONYM 4-40
4.8 ENTRY POINT e 4-42
49 FILE 4-47
410 FILE SYNONYM 4-57
411 LINE 4-59
412 LOAD MODULE 4-66
413 LOGICAL TERMINAL 4-71
414 MAP . 4-78
415 MESSAGE 4-85
416 MODULE (PROCESS/QFILE/TABLE) 4-92
417 PANEL (SCREEN) 4-107
418 PHYSICAL TERMINAL 4-112
419 PROCESS 4-120
420 PROGRAM 4-129
421 QFILE 4-148
422 QUEUE 4-156
4.23 RECORD (REPORT/TRANSACTION) 4-163
4231 RECORD statement 4-164
4.23.2 RECORD ELEMENT substatement 4-183
4233 COBOL substatement 4-196
4234 REMOVE ALL substatement 4-205
4235 VIEW ID substatement 4-205
424 RECORD SYNONYM o 4-207
425 SYSTEM (SUBSYSTEM) 4-209
426 TABLE 4-216
427 TASK e 4-228
428 USER 4-236
429 USER-DEFINED ENTITY 4-257

iv CA-IDMS IDD DDDL Reference

Chapter 5. Online DDDL Compiler 51

51 OVEIVIEW e 5-3
52 Screenformat 54
53 Onlinesessions 5-6
531 Beginningasession 5-6
532 Conducting anonlinesession 5-7
533 Terminating asession 5-8
534 Recovering @asession 5-9
54 Onlinecommands 5-10
541 Toplinecommands, 5-10
542 Linecommands 5-12
5.5 Program function keys assigned to operations 5-14
Chapter 6. IDD Menu Facility 6-1
6.1 OVErView 6-3
6.2 Screenformats 6-4
6.21 Fixedscreens 6-4
6.22 Pageablescreens 6-5
6.3 Using menu facility screens 6-8
6.3.1 Predefined control keys 6-8
6.3.2 Cursor positioning 6-9
6.3.3 Message display and field highlighting 6-10
6.3.4 Default valueassignment L 6-10
6.35 Helpscreens 6-11
6.4 Onlinecommands 6-12
6.4.1 Top-linecommands 6-12
6.42 Linecommands 6-13
6.5 Conducting a menu facility session 6-15
6.5.1 Beginningasession 6-15
6.5.2 Navigating screens 6-16
6.5.3 Displaying entity occurrences 6-19
6.5.4 Adding entity occurrences 6-19
6.5.5 Modifying entity occurrences 6-19
6.5.6 Deleting entity occurrences 6-20
6.5.7 Terminating asession 6-20
6.6 Descriptions of IDD menu fecility screens 6-21
6.6.1 Entry and processingscreens 6-21
6.6.2 Screens common to al entity types 6-22
6.6.3 ATTRIBUTE entity screens 6-23
6.6.4 CLASSentity screens 6-24
6.6.5 ELEMENT entity screens 6-25
6.6.6 FILE entity screens 6-26
6.6.7 MESSAGE entity screens 6-27
6.6.8 MODULE entity screens, 6-28
6.6.9 PROCESS entity screens 6-29
6.6.10 PROGRAM entity screens 6-29
6.6.11 QFILE entity screens 6-31
6.6.12 RECORD entity screenso 6-32
6.6.13 SYSTEM entity screens 6-33
6.6.14 TABLE entity screens 6-34

Contents v

6.6.15 USER entity screens 6-35

6.7 Samplesession 6-38
Appendix A. DDDL Compiler Batch ExecutionJCL A-1
A.1l IDMSDDDL under OS/390 A-4
A.2 IDMSDDDL under VSE/ESA A-6
A.3 IDMSDDDL under VM/ESA A-13
A.4 IDMSDDDL under BS2000/0SD A-15
Appendix B. Syntax Convertersfor COBOL and PL/I B-1
B.1 IDMSIDDC (COBOL converter) B-4
B.1.1 Under OS/390 B-4
B.1.2 Under VSE/ESA B-5
B.1.3 Under VM/ESA B-5
B.1.4 Under BS2000/0SD B-5
B.2 IDMSIDDP (PL/l converter) B-7
B.21 Under OS/390 B-7
B.22 Under VSE/ESA B-7
B.23 Under VM/ESA B-8
B.24 Under BS2000/0SD B-8
Appendix C. Data Transfer Between Dictionaries C-1
Cl OVEIVIeW o C-4
C.2 Stepsfor datatransfer C-6
C.3 Example of transferring data between dictionaries C-7
C.4 Completing the datatransfer C-8
C5 Transferring inbatchmode L C-9
Appendix D. Default Version Number Conventions D-1
Appendix E. IDD User-Exit Program E-1
E.1l Whenauser exitiscadled E-4
E.2 Rulesfor writing the user-exit program E-5
E.3 Control blocks and sample user-exit programs E-7
E.3.1 User-exit control block, E-7
E.3.2 SIGNON Element Block E-7
E.33 SIGNON Block E-8
E.3.4 Entity control block E-8
E.3.5 Card-image control block E-9
E.4 Sample IDD user-exit program E-11
Appendix F. Using the DDDL Compiler asa Subprogram F-1
F1 Overview F-3
F.2 Compiler interface parameter list, F-5
F21 ClOblock F-5
F.22 CIOFblock F-6
F.23 User parameters F-7
F.3 Work-areafile F-8
F.4 Sample programthat callsIDD F-9
Appendix G. BS2000/0SD Considerations G-1

vi CA-IDMS IDD DDDL Reference

G.1 SYSDTA systemfile G4

G.2 SYSLST systemfile G-5
G.3 SYSOPT system file G-6
G4 Filereferenceterminology G-7
Appendix H. Double-Byte Character Set (DBCS) Strings H-1
H1 Overview e H-3
H.2 Coding DBCSstrings H-4
H.2.1 Assigning graphic literalsto VALUE clauses H-4
H.2.2 Defining a graphicsliteral H-4
H.2.3 Defining mixed literals o H-5
H.2.4 Assigning DBCS external picturesto lements H-5
H.2.5 Defining DBCS editing criteriaintables H-6
Index X-1

Contents vii

viii CA-IDMS IDD DDDL Reference

How to Use This Manual

How to Use This Manual ix

What this manual is about

The IDD DDDL Reference serves as the primary source for using the Data Dictionary
Definition Language (DDDL) to populate and maintain dictionaries.

The purpose of this manual is to provide information on DDDL syntax, coding
considerations, and DDDL compiler options. The manual also includes information on
entering statements using the online compiler and the Integrated Data Dictionary (IDD)
menu facility.

x CA-IDMS IDD DDDL Reference

Who should use this manual

This manua is intended for anyone who uses the dictionary or who is responsible for
dictionary administration.

Y ou should understand dictionary concepts before using this manual. See CA-IDMS
Concepts and Facilities for this information.

How to Use This Manual xi

How information is presented

This manual has six chapters and eight appendixes.

The chapters are as follows:

Coding Considerations (Chapter 1)

A discussion of genera rules for preparing source statements for input to the
DDDL compiler

DDDL Compiler Options (Chapter 2)

Descriptions of the statements that control DDDL compiler execution and default
processing options

General DDDL Syntax Options (Chapter 3)

Instructions for coding the DDDL syntax options that are common to many entity
types
Entity-Type Syntax (Chapter 4)

Instructions for using the ADD, MODIFY, REPLACE, DELETE, and
DISPLAY/PUNCH statements with each IDD entity type and entity-type synonym

Online DDDL Compiler (Chapter 5)

A discussion of how to conduct an online DDDL compiler session and a list of
online commands

IDD Menu Facility (Chapter 6)

A discussion of how to conduct an IDD menu facility session

The appendixes are as follows:

DDDL Compiler Batch Execution JCL (Appendix A)
A presentation of the JCL required to execute the batch DDDL compiler
Syntax Converters for COBOL and PL/I (Appendix B)

Instructions for converting COBOL and PL/I source statements and copy books to
DDDL entity-type syntax

Data Transfer Between Dictionaries (Appendix C)

A step-by-step description of transferring data from one dictionary to another
Default Version Number Conventions (Appendix D)

A list of the version number conventions used by CA-IDMS software components
IDD User-Exit Program (Appendix E)

A discussion of the IDD user exit program and instructions for coding each exit
Using the DDDL Compiler as a Subprogram (Appendix F)

Instructions for calling the DDDL compiler as a subprogram from other programs
and CA-ADS dialogs

xii CA-IDMS IDD DDDL Reference

BS2000/0OSD Considerations (Appendix G)
Suggestions for DDDL compiler usage under the BS2000/0OSD operating system
Double-Byte Character Set Strings (Appendix H)

Instructions for using the double-byte character set in coding specific variables

How to Use This Manual xiii

Related manuals

Use this manual in conjunction with these and other CA-IDMS manuals:
. CA-IDMS Concepts and Facilities
» &US$DDR.
= CA-IDMS Dictionary Diagram
. CA-IDMS System Operations
1 CA-IDMS Database Administration
» CA-IDMS Messages and Codes
. CA-IDMS Online Compiler Text Editor
» CA-IDMS Command Facility
B &USSYSGRS.
. CA-IDMS System Generation
. CA-IDMS Transfer Control Facility

xiv CA-IDMS IDD DDDL Reference

Understanding syntax diagrams

Look at the list of notation conventions below to see how syntax is presented in this
manual. The example following the list shows how the conventions are used.

UPPERCASE Represents a required keyword, partial keyword,

OR
SPECIAL CHARACTERS character, or symbol that must be entered
completely as shown.

Towercase Represents an optional keyword or partial keyword
that, if used, must be entered completely as
shown.

underlined lowercase Represents a value that you supply.

“ Points to the default in a list of choices.

Towercase bold Represents a portion of the syntax shown in

greater detail at the end of the syntax or elsewhere
in the document.

\ 4
v

Shows the beginning of a complete piece of
syntax.

\4
A

Shows the end of a complete piece of syntax.

v

Shows that the syntax continues on the next line.

\ 4

Shows that the syntax continues on this line.

\ 4

Shows that the parameter continues on the next

line.
> Shows that a parameter continues on this line.
»— parameter ——— > Shows a required parameter.
>—|: parameter :l—’ Shows a choice of required parameters. You must
parameter select one.

v

T parameter ll Shows an optional parameter.

»

v

Shows a choice of optional parameters. Select

i: Eg::mgig: :‘ one or none.

l—_|_> Shows that you can repeat the parameter or
»—|— parameter

specify more than one parameter.

— ——‘—> Shows that you must enter a comma between
>y~ parameter repetitions of the parameter.

How to Use This Manual xv

Sample syntax diagram

Required portion of parameter
Optional portion of parameter
User-supplied value

Beginning of Required
the syntax parameter

Syntax continues
on another line

&

variable

Syntax continues on this line Comma reqgulred between repstition

Required parameter Repetition alfowed

Select one

v KEYWORD variable. |

variable
kivariableij
variable

Optional keyword

Select one or nane Portion of syntax

Defauit expanded elsewhere

»

v

End of the syntax

e
— KEYWORD

o
g

xvi CA-IDMS IDD DDDL Reference

Chapter 1. Coding Considerations

L1 Overview 1-3
12 Syntax format 1-5
1.3 Character set restrictions 1-8
1.4 Keywords and user-suppliednames 1-10
15 Input columnrange 1-11
1.6 Comment text, source statements, and edit instructions 1-12
1.6.1 Commenttext 1-12
1.6.2 Sourcestatements 1-13
1.6.3 Editinstructiontext 1-13
1.7 Batch considerations 1-14
1.7.1 Usercomments 1-14
1.7.2 Carriage control statements, 1-14

Chapter 1. Coding Considerations 1-1

1-2 CA-IDMS IDD DDDL Reference

1.1 Overview

1.1 Overview

The Data Dictionary Definition Language (DDDL) is the source language used to
maintain data resource components in the dictionary. Input to the DDDL compiler
consists of source statements; the compiler processes the input and populates the data
dictionary. Once added to the dictionary, data resource definitions can be modified,
replaced, deleted, displayed, and punched by using DDDL syntax.

You can submit input to the DDDL compiler in online or batch mode.

Note: Identical syntax rules apply to online and batch input to the DDDL compiler.

Online statement entry: Online, you can submit statements in three ways:

® Submit freeform source statements directly to the DDDL compiler. A text
editor writes the input to and output from the DDDL compiler to a work file, the
contents of which are displayed at the terminal. At the end of each online session,
the DDDL compiler displays a Transaction Summary. The summary lists the
DDDL statements submitted and the number of error messages issued.

»» For information on using the DDDL compiler online, see Chapter 5, “Online
DDDL Compiler” on page 5-1.

® Submit information through the IDD menu facility using standard,
fixed-format screens. Because syntax parameters are presented on each screen,
the user need not be familiar with DDDL syntax and rules. Definitions can be
displayed, added, modified, or deleted from the dictionary.

»» For information on using the IDD menu facility, see Chapter 6, “IDD Menu
Facility” on page 6-1.

= Submit source statements using the command facility. You can submit source
statements, optionally identifying any ambiguous entity types (for example, DDDL
FILE as opposed to DDL FILE) using the keyword 1DD.

»» For information on using the command facility to enter DDDL statements, refer
to the CA-IDMS Command Facility document.

Batch statement entry: As an alternative to online statement entry, you can
submit freeform source statements to the DDDL compiler in batch mode. Output from
the DDDL compiler consists of the Integrated Data Dictionary Activity List, which
lists each source input statement and a Transaction Summary (as described above
under online entry). Error messages issued during the batch run appear on the line
immediately following the problem statement.

The following figure shows a sample Integrated Data Dictionary (IDD) Activity List.

Chapter 1. Coding Considerations 1-3

1.1 Overview

IDMSDDDL 15.0 COMPUTER ASSOCIATES INTERNATIONAL, INC. DATE TIME PAGE
INTEGRATED DATA DICTIONARY ACTIVITY LIST 01/12/99 08463000 0001

0001 SET OPTIONS INPUT COLUMNS ARE 1 THRU 71.

0002 MODIFY ENTITY SYSTEM

0003 USER DEFINED NEST IS 'SIMILAR FILE'.

0004 MODIFY ENTITY SYSTEM

0005 USER DEFINED NEST IS 'RELATED FILE'.

0006 ADD CLASS ENTITY-STATUS

0007 DELETION LOCK IS ON

0008 ATTRIBUTES ARE MANUAL SINGULAR.

0009 ADD CLASS ENTITY-TYPE

0010 DELETION LOCK IS ON

0011 ATTRIBUTES ARE SINGULAR.

0012 ADD ATTRIBUTE PRODUCTION

0013 WITHIN CLASS ENTITY-STATUS

0014 DELETION LOCK IS ON

0015 COMMENTS 'DESIGNATES PRODUCTION OCCURRENCES'.

0016 ADD SYSTEM ORDER-CONTROL.
0017 ADD SYSTEM BACK-ORDER.
0018 ADD SYSTEM INVENTORY

0019 WITHIN SYSTEM ORDER-CONTROL

0020 ENTITY-STATUS PRODUCTION

0021 'SIMILAR FILE' BACK-ORDER.

IDMSDDDL 15.0 COMPUTER ASSOCIATES INTERNATIONAL, INC. DATE TIME PAGE

INTEGRATED DATA DICTIONARY ACTIVITY LIST 01/12/99 08463000 0002

*% TRANSACTION SUMMARY **

ENTITY ADD MODIFY REPLACE DELETE DISPLAY

ENTITY 0 2 0 0 0

ATTRIBUTE 1 0 0 0 0

CLASS 2 0 0 0 0

SYSTEM 3 0 0 0 0

NO ERRORS OR WARNINGS ISSUED FOR THIS COMPILE

The sections in this chapter describe the general rules for preparing statements for
input to the DDDL compiler.

1-4 CA-IDMS IDD DDDL Reference

1.2 Syntax format

1.2 Syntax format

DDDL compiler input consists of statements arranged in a prescribed syntactical order.
These statements reflect the logical organization of the dictionary by supporting
standard IDD entity types, entity-type synonyms, entity types that support CA-IDMS
functions, and user-defined entity types.

All
]
"
]
]

DDDL entity-type statements include the following five components:
Verb

Entity-type

Entity-occurrence

Optional clauses

Period

Descriptions of these components follow.

Verb: The verb designates the requested function. One of the following verbs must
accompany each DDDL entity-type statement:

ADD establishes a new entity occurrence in the dictionary (see the table below for
information about acceptable synonyms).

MODIFY updates an existing entity occurrence with user-supplied options (see
the table below for information about acceptable synonyms).

DELETE removes an existing entity occurrence from the dictionary (see the table
below for information about acceptable synonyms).

For compatibility with CA-IDMS SQL, the following verbs have been included as
acceptable synonyms for ADD, MODIFY, and DELETE.

Verb Synonym
ADD CREATE
MODIFY ALTER
DELETE DROP

REPL ACE replaces an existing entity occurrence but preserves relationships
established through other entity-type syntax.

DISPLAY displays one or more existing entity occurrences, as follows:

— Inan online session, DISPLAY lists the requested definitions at the terminal.
The user can edit the output and resubmit it to the DDDL compiler.

— In batch mode, DISPLAY prints the requested definitions on the Integrated
Data Dictionary Activity List.

PUNCH lists one or more existing entity occurrences, as follows:

Chapter 1. Coding Considerations 1-5

1.2 Syntax format

— Inan online session, PUNCH lists the requested definitions at the terminal.
The user can edit the output and resubmit it to the DDDL compiler.

— In batch mode, PUNCH writes the requested definitions to the SY SPCH
output file or to an IDD module that has been defined as the PUNCH
destination.

Entity type: The entity type identifies the type of data that is the object of the
specified verb. The DDDL compiler supports the following standard 1DD entity types,
entity-type synonyms, and CA-IDMS components:

ATTRIBUTE PROGRAM

CLASS QFILE
DESTINATION QUEUE

ELEMENT RECORD

ELEMENT SYNONYM RECORD SYNONYM
ENTRY POINT REPORT

FILE SUBSYSTEM

FILE SYNONYM SYSTEM

LINE TABLE

LOAD MODULE TASK
LOGICAL-TERMINAL TRANSACTION
MAP USER

MESSAGE User-defined entity
MODULE PROCESS

PANEL PHYSICAL-TERMINAL

Entity occurrence: The entity occurrence identifies a specific occurrence of the
named entity type, entity synonym, or CA-IDMS component. An entity occurrence
consists of a name and an optional version number and language (attribute within the
system-supplied class LANGUAGE), which permits the user to assign one name to
multiple entity occurrences.

Optional clauses: Optiona clauses provide qualifying data for each entity
occurrence. Once an entity occurrence has been defined, the user can extend its basic
definition with optional data and comments and can associate the entity with other
occurrences of the same entity type.

Period: A period signifies the end of the statement and is required in all DDDL
statements. The period can directly follow the last word in the statement, can be
separated from the last word by blanks, or can appear on a separate line. If specified

1-6 CA-IDMS IDD DDDL Reference

1.2 Syntax format

in the SET OPTIONS statement (see 2.4, “SET OPTIONS statement” on page 2-8), a
semicolon can also be used as an end-of-statement character.

Note: The end-of-statement character is not shown in the syntax diagrams for DDDL
statements.

Order of components: The verb, entity-type name, and entity-occurrence
identification, which are required in all DDDL statements, must be specified in the
order described above.

Optional clauses follow the entity-occurrence identification and can be specified in any
order.

The period (or alternate character) must terminate each statement.

Example of statement components: The following example graphicaly
illustrates the components of a typical DDDL statement:

Verb

Entity-type name

Entity-occurrence identification
Optional clause

Terminating period

ADD ELEMENT DATE-OF-HIRE |PICTURE IS X(6)’ .

Exceptions to the syntax format rules are indicated in the syntax presentation.

Chapter 1. Coding Considerations 1-7

1.3 Character set restrictions

1.3 Character set restrictions

To accommodate a broad range of applications, both automated and manual, the
DDDL compiler enforces a minimum number of character set restrictions. These
restrictions are shown in the following table.

Restriction for:

Description

Statement terminator

Use a period to terminate each DDDL statement.
Assume the use of the terminating period when you read
the syntax in this document. It will not be shown in
syntax diagrams.

If the period is omitted, the DDDL compiler executes the
statement from which the period has been omitted, issues
a warning message, and flags all subsequent statements
with an error message.

Note: You can establish recognition of the semicolon as
an aternative end-of-statement character if you specify
the SET OPTIONS clause SEMICOLON ALTERNATE
END OF SENTENCE IS ON. For more information, see
2.4, “SET OPTIONS statement” on page 2-8.

Delimiters

Use one or more blanks as a delimiter. Commeas,
semicolons, and colons are treated as blanks.

Note: You cannot use the semicolon as a delimiter if
you've defined it as a statement terminator.

Throughout this manual, commas have been included in
numbers to enhance readability (for example, where the
manual uses 32,767, you should use 32767).

Null strings

Use two single quotation marks with no intervening space
to nullify existing values. Note, however, that comment
text cannot be nullified in this manner.

1-8 CA-IDMS IDD DDDL Reference

1.3 Character set restrictions

Restriction for:

Description

Quotation marks

You must use a quotation mark (or a specia character
designated as the site-standard quote character) to enclose
user-supplied names containing one or more embedded
delimiters (blanks, commas, periods, semicolons,
apostrophes, parentheses, colons, and quote characters).

Note: You cannot use the semicolon as a delimiter if
you've defined it as a statement terminator.

The DDDL compiler interprets any word enclosed in
quotation marks as a user-supplied value, even if the
word is a DDDL keyword. For example:

add element <--- DDDL keyword
name is 'element' <--- user-supplied name
pic X(9).

The IDD installation procedure establishes the single
quotation mark (') as the default quote character.
However, the user can define a site-standard quote
character by using the QUOTE IS clause of the SET
OPTIONS statement (see 2.4, “SET OPTIONS statement”
on page 2-8).

If you want to include the site-standard quote character in
a user-supplied name, code that character twice. For
example, assuming that the single quotation mark (') is
the site-standard quote character, the name MARY'S
PROGRAM must be input as '"MARY"S PROGRAM'.

Chapter 1. Coding Considerations 1-9

1.4 Keywords and user-supplied names

1.4 Keywords and user-supplied names

Keywords: Keywords are predefined names or specia characters that are either
required (shown as uppercase in syntax diagrams) or optional (shown as lowercase).
You can enter the full keyword or abbreviate each keyword to a minimum of three
characters, provided that no other keyword in the same syntactical position can be
identically abbreviated. The keywords ELEMENT and VERSION are exceptions to
the three-character minimum,; they can be abbreviated to EL and V, respectively.
Keyword abbreviations that require more than three characters are noted in the syntax.

User-supplied names: User-supplied hames are names that you define. In
addition to the character set restrictions, observe these points when you define names:
= Names must be unique.

= Names must not duplicate any of the reserved words of a specific compiler or
assembler, and they must observe the compiler's character set and word-length
restrictions.

= Names must be 1 to 32 characters (with noted exceptions)
» Valid characters for names:
— Letters (A through Z) (uppercase or lowercase)
— Digits (0 through 9)
- Atsign (@)
— Doallar sign ($)
— Pound sign (#)
— Hyphen (-) (the first and last character in a name can't be a hyphen)
— Underscore ()
= A name must include at least one nonnumeric character.

= When you assign names to user-defined nests, comment keys, and alternative
picture keywords, the DDDL compiler classifies each word and places it in the
first appropriate category, as follows:

1. DDDL keyword

2. User-defined comment key

3. User-defined nest

4. User-defined nest inverse key

5. Alternative picture keyword (ELEMENT entity type only)
6. Class name

For example, if a user-defined comment key that is not enclosed in quotation
marks is the same as a DDDL keyword, the DDDL compiler interprets the
comment key as a DDDL keyword.

1-10 CA-IDMS IDD DDDL Reference

1.5 Input column range

1.5 Input column range

You can code DDDL source statements on a single line or on multiple lines, in
columns 1 through 80. However, the IDD installation procedure establishes these
default input ranges:

m Batch compiler — 1 through 72
» Full-screen mode — 1 through 79
® Line mode — 1 through 80

You can override input range defaults by using the INPUT COLUMNS ARE clause of
the SET OPTIONS statement (see 2.4.2, “SET OPTIONS syntax” on page 2-9).

Chapter 1. Coding Considerations 1-11

1.6 Comment text, source statements, and edit instructions

1.6 Comment text, source statements, and edit instructions

This section describes special rules and considerations for coding these variables:
= comment-text
® source-statement

® edit-instruction

1.6.1 Comment text

Comment text is represented in the DDDL statements as comment-text. Guidelines for
entering comment text are as follows:

® Enter comment text in columns 1 through 80. Include the quote character in the
input column count when determining the number of characters per line.

®» Comments can consist of any number of lines.
® Each line must begin with the site-standard quote character.

» Each line must end with the site-standard quote character, unless it is being
continued on the next line.

® To continue comment text beyond one line, code a hyphen character on all
subsequent lines (the hyphen is included in the number of characters per line).
The hyphen can appear anywhere within the specified input column range,
provided it is the first character on the continued line.

Note: The DDDL compiler does not process lines of comment text that begin
with an asterisk (*).

® To concatenate lines of comment text into one line containing a maximum of 80
characters, code a plus sign (+) as the first character on the line to be
concatenated.

Note: You must include a closing quotation mark on a line that is to be
concatenated.

Example of continuation and concatenation: The following example illustrates
lines of comment text that are to be continued (as represented by the hyphen) and
concatenated (as represented by the plus sign). Note that spaces coded before the
closing quotation mark are included in concatenated lines:

'lengthy input can be concatenated'

-'onto one line '

+'containing up to 80 characters.'

-'code a + as the first character on a line'
-'that is to be concatenated.'

-'the plus sign and quotation mark'

-'are not included in the '

+'80-character count.'

The comment text as it would appear on a batch report:

1-12 CA-IDMS IDD DDDL Reference

1.6 Comment text, source statements, and edit instructions

LENGTHY INPUT CAN BE CONCATENATED

ONTO ONE LINE CONTAINING UP TO 80 CHARACTERS.
CODE A + AS THE FIRST CHARACTER ON A LINE
THAT IS TO BE CONCATENATED.

THE PLUS SIGN AND QUOTATION MARK

ARE NOT INCLUDED IN THE 80-CHARACTER COUNT.

1.6.2 Source statements

Module, process, and g-file source statements are represented in DDDL statements as
source-statement. Source statements can consist of any number of input lines. The
DDDL compiler reads text in columns 1 through 80 and places it in the requested
module, process, or g-file.

Source input is terminated when the DDDL compiler encounters an MSEND
instruction.

Example of source statements: The following example shows the statements
associated with the MODULE ADDRESS1 in the dictionary:
add module addressl
module source follows
900010 move cust-name to name-line.

900020 move street-no to no-line.
900030 move street-name to str-Tine.

é00080 move zip-code to z-no.
900090 write Tabel-rec.
msend.

»» For information on defining modules, processes, and g-files, see 4.16, “MODULE
(PROCESS/QFILE/TABLE)” on page 4-92.

1.6.3 Edit instruction text

An edit instruction is represented in a DDDL statement as edit-instruction. EDIT
instruction text can consist of any number of input lines. The DDDL compiler reads
the contents of columns 1 through 80 and associates it with the text that is the object
of the EDIT instruction.

Valid keywords in an edit instruction are INSERT, REPLACE, ERASE, LIST,
SEQUENCE, and SHOW. CEND terminates the INSERT and REPLACE edit

instructions.

»»> For more information on edit instructions, see 3.5.3, “EDIT clause’ on page 3-25.

Chapter 1. Coding Considerations 1-13

1.7 Batch considerations

1.7 Batch considerations

Coding for user comments and coding for carriage control statements are described in
this section.

1.7.1 User comments

Use *+ or -- anywhere on an input line to indicate that the remainder of the lineis a
user comment. If you code these characters in the first two positions, the line will not
be echoed. If you want the comment line to be echoed, use the character * and a
space in the first two positions.

1.7.2 Carriage control statements

The SKIP and EJECT statements are used to format the Integrated Data Dictionary
Activity List. These control statements are not printed and do not affect the operation
of the DDDL compiler.

SKIP statement: The SKIP statement inserts one, two, or three blank lines between
any two DDDL source statements. SKIP can also be used in an online session to
create a single blank line.

Syntax for the SKIP statement is SKIPcount. Count is the number 1, 2, or 3 (for
example, SKIP2).

SKIP1/2/3 specifies that the DDDL compiler isto insert 1, 2, or 3 blank lines in the
Integrated Data Dictionary Activity List following the line on which the SKIP
statement appears.

The following rules apply to the SKIP statement:

® The specified integer cannot be separated from the keyword SKIP. SKIP1 is valid;
SKIP 1 isinvalid.

» The keyword SKIP must be by itself on the line.

n |If the keyword SKIP appears within module source code that is the object of an
INSERT or REPLACE instruction, the DDDL compiler interprets SKIP as part of
the module source code.

EJECT statement: The EJECT statement specifies advancement of the paper to the
top of a new page before printing the next source statement. Typically, EJECT is used
to format the Integrated Data Dictionary Activity List by entity type.

Syntax for the EJECT statement is simply EJECT. The following rules apply to the
EJECT statement:

» The keyword EJECT must be by itself on the line.

1-14 CA-IDMS IDD DDDL Reference

1.7 Batch considerations

n |f the keyword EJECT appears within module source code that is the object of an
INSERT or REPLACE instruction, the DDDL compiler interprets EJECT as part
of the module source code.

Chapter 1. Coding Considerations 1-15

1-16 CA-IDMS IDD DDDL Reference

Chapter 2. DDDL Compiler Options

2.1 Overview
2.2 SIGNON statement
2.3 SIGNOFF statement
24 SET OPTIONS statement
24.1 SET OPTIONSfunctions
242 SET OPTIONS syntax i

2.4.3 SET OPTIONS defaults and overrides

24.4 SET OPTIONS security
25 DISPLAY/PUNCH OPTIONS statement
2.6 INCLUDE statement
2.7 COMMIT statement

Chapter 2. DDDL Compiler Options 2-1

2-2 CA-IDMS IDD DDDL Reference

2.1 Overview

2.1 Overview

You can direct processing in a DDDL compiler session using the statements shown in

the following table.

Statement

What it does

SIGNON

Begins an online session or batch run of the DDDL
compiler.

SIGNOFF

Ends an online session or batch run of the DDDL
compiler.

SET OPTIONS

Supplies the default processing options for the current
dictionary or DDDL compiler session.

DISPLAY/PUNCH
OPTIONS

Supplies display/punch defaults for the current dictionary
or DDDL compiler session.

INCLUDE

Retrieves the source statements associated with an IDD
module.

COMMIT

Writes a checkpoint to the journa file.

These statements are described in this chapter.

Chapter 2. DDDL Compiler Options 2-3

2.2 SIGNON statement

2.2 SIGNON statement

The SIGNON statement permits users to identify themselves to the DDDL compiler
and to describe the environment in which the compiler is to execute.

If IDD SECURITY is ON in the dictionary, you must already be assigned the IDD
authority through the AUTHORITY clause of the USER statement (see 4.28, “USER”
on page 4-236).

Note: You can aso prevent unauthorized access to the dictionary using the central
security facility. For information on the central security facility, see CA-IDMS
Security Administration.

Syntax: SIGNON statement

»»—— SIGnon

v

| -

T))
USEr name is user-id
—[= ——I— L PASsword —[1'5_:’— password]

v

DICtionary name 1ct1onarx—nam
DICTName_—,J TS

DBName

NODe name nodename
NODEName] L = 's T fodename

v
A

RETrieval —— DDLDCLOD
DDLDCMSG

|— USAge mode —[is UPDate ———— — for ALL «
j_E PROtected UPDate — ‘E DDLDML

Parameters:

USEr name is user-id
Specifies the ID of the user signing on to the DDDL compiler. If the SECURITY
clause of the SET OPTIONS statement specifies that security for IDD is on,
user-id must be the ID of a user authorized (in the USER clause) for DDDL
compiler access. User-id must be a 1- to 32-character value and must be enclosed
in quotation marks if it contains embedded blanks or delimiters.

PASsword is password
Specifies the password of the user signing on to the DDDL compiler.

DICtionary name is dictionary-name
Specifies the dictionary to be accessed by the DDDL compiler. If
dictionary-name is blanks enclosed by quotes, it indicates the default dictionary
for the local mode runtime environment or the target node if running under the
central version.

2-4 CA-IDMS IDD DDDL Reference

2.2 SIGNON statement

NODe name is hodename
Specifies the name of the node that controls the dictionary to be accessed.
Nodename identifies a node in the network. [f nodename is blanks enclosed in
quotes, it indicates the local node (the node at which the online compiler is
executing or the DC/UCF system accessed by the batch compiler running under
the central version).

USAge mode is
Specifies the manner in which the DDDL compiler can access dictionary areas.
This clause overrides the usage mode defined during system generation by means
of the IDD statement (see CA-IDMS System Generation).

UPDate
Specifies that the current user and all other users can update the dictionary
concurrently. The DDDL compiler automatically prevents deadlock conditions or
situations in which users must wait for commands issued by other users to be
processed. This is the default, unless overridden during system generation, and is
aso the suggested usage mode for the DDDL compiler.

PROtected UPDate
Specifies that only the current user can update the dictionary. Other users are
restricted to performing retrieval operations. During an online session, the current
user has exclusive control for update only if the DDDL compiler has been
invoked. Between terminal interactions, the areas can be updated by other users.

RETrieval
Specifies that the current user can only perform retrieval operations against the
dictionary. This usage mode does not restrict other users from accessing the
dictionary in update or protected update mode.

FOR ALL
Indicates that the usage mode applies to all areas. ALL is the default.

FOR DDLDML
Indicates that the usage mode applies only to the DDLDML area.

FOR DDLDCLOD
Indicates that the usage mode applies only to the DDLDCLOD area.

FOR DDLDCMSG
Indicates that the usage mode applies only to the DDLDCMSG area.

Usage:

When to specify USER and PASSWORD in SIGNON: If you are identified to the
environment in which the compiler is executing and you do not hold the necessary
authorities to perform the intended actions, you must use the USER clause of
SIGNON. In this case, you would specify the ID of a user who holds the necessary
authorities (providing USER SIGNON OVERRIDE IS ALLOWED is specified in the
SET OPTIONS statement). If the user ID you specify has been assigned a password
in the dictionary being accessed, you must also supply that password in the SIGNON
statement.

Chapter 2. DDDL Compiler Options 2-5

2.2 SIGNON statement

If you are not identified to the execution environment and IDD SECURITY is ON, you
must use the USER parameter of SIGNON. In this case, the user ID and password
you specify are verified by the central security facility. If verified, you will be known
to both the execution environment and the compiler. The user ID must hold the
appropriate IDD authority in the dictionary you are accessing as well as the authority
to sign on to the DC/UCF system (if you are executing online). If the user ID you
specify has been assigned a password in the central security facility, that password
must be specified in the SIGNON statement.

In all other cases, the USER parameter is not required and should not be specified.

»> For more information on the central security facility, refer to the CA-IDMS Security
Administration document.

Identifying the dictionary to be accessed: The DICTIONARY and NODENAME
clauses together identify the dictionary to be accessed by the compiler. If only oneis
specified, the other is derived.

Dictionary-name, if specified, must identify a DBNAME or segment accessible at the
target node or loca mode runtime environment. |f dictionary-name is not specified,
but nodename is specified, then the dictionary is the default dictionary at the specified
node.

In local mode, nodename has no meaning and is ignored. When running under the
central version, nodename, if specified, identifies the node at which the target
dictionary resides. If not specified, the location of the dictionary is determined from
the resource table associated with the local DC/UCF system.

If neither dictionary-name nor nodename is specified, they will be established from:

® The TCF specification, if running under TCF (for more information, refer to
CA-IDMS Transfer Control Facility)

m Session attributes as established by DCUF, SYSIDMS, system or user profiles

® The default dictionary associated with the local runtime environment.
Readying several areas: The USAGE MODE clause can be repeated to ready
different areas in different usage modes. For example, to add or delete a load module

from an area on a system in which the DDLDML area is available for retrieval only,
specify USAGE MODE IS RETRIEVAL FOR DDLDML.

2-6 CA-IDMS IDD DDDL Reference

2.3 SIGNOFF statement

2.3 SIGNOFF statement

When issued during an online session, SIGNOFF signs off the user from the DDDL
compiler and deletes the default session options. In batch mode, the SIGNOFF
statement terminates the DDDL compiler.

Syntax: SIGNOFF statement

SIGNOFF
E BYE
LOGOFF —

A\
A

Chapter 2. DDDL Compiler Options 2-7

2.4 SET OPTIONS statement

2.4 SET OPTIONS statement

The SET OPTIONS statement controls DDDL compiler processing options. The user
can supply default processing options for the current dictionary or for the current
DDDL session. This section has the following information about the SET OPTIONS
statement:

® Functions of the statement
® Syntax and parameter descriptions
» Default options and overrides

® Security considerations

2.4.1 SET OPTIONS functions

The SET OPTIONS statement allows you to perform the functions shown in the
following table.

To do this

Use this SET OPTIONS clause

Specify dictionary
security options

PREPARED BY

REVISED BY

SECURITY FOR

PASSWORD SECURITY OVERRIDE
REGISTRATION OVERRIDE

USER SIGNON OVERRIDE

Set a site-standard quote
character

QUOTE

Set a site-standard
decimal point character

DECIMAL-POINT

Specify maintenance
conventions for
entity-occurrences

DELETE
DEFAULT

Establish keywords that
identify alternative
formats (up to four) for
element occurrences

ALTERNATE PICTURE KEYWORD

Direct the text editor of
the batch DDDL compiler

SEQUENCE
BEFORE
AFTER
RESEQUENCE

2-8 CA-IDMS IDD DDDL Reference

2.4 SET OPTIONS statement

To do this

Use this SET OPTIONS clause

Set input and output
formats for online and
batch processing

PROMPT/NO PROMPT
ECHO/NO ECHO
LIST/NO LIST
HEADER/NO HEADER
LINES PER PAGE
INPUT COLUMN
OUTPUT LINE SIZE
JCL CODE

Specify whether DML
precompilers are to accept
undefined programs at
runtime

AUTHORIZATION IS ON/OFF

Specify whether
CULPRIT isto copy file
definitions from the
dictionary at runtime

CULPRIT AUTO ATTRIBUTES

Specify default level
numbers for elements that
participate in
record-element structures

LEVEL NUMBERS

Establish default version
numbers

DEFAULT FOR NEW VERSION
DEFAULT FOR EXISTING VERSION

Control
DISPLAY/PUNCH output

PUNCH TO

FORMAT

DISPLAY ALL LIMIT

INTERRUPT COUNT

DISPLAY WITH/ALSO WITH/WITHOUT
DISPLAY AS SYNTAX/COMMENTS
DISPLAY VERB

Establish a default
end-of-file indicator for
use with the online
DDDL compiler

EOF

Establish recognition of
an alternative
end-of-statement character

SEMICOLON ALTERNATE

2.4.2 SET OPTIONS syntax

Syntax: SET OPTIONS statement

Chapter 2. DDDL Compiler Options 2-9

2.4 SET OPTIONS statement

»—— set OPTions for T SESsion < —
DICtionary —

\4

A

L PREPared by user-id B H |
PASsword is password

v

A

L REVised by user-id T a |
PASsword is password

v

A

L QUOte is —[.I. :I—‘

v

A

DECimal-point is _E PERiod «
COMma

v

A

|— DELete is —[ON
OFF «

v

A

|— DEFault is —|: ON
OFF «

v

A

SECOnd
THIrd

FIRst g alternate picture keyword is 'alternate-format-keyword' il
FOUrth

v

A

L SEQuence is —E seguence_—l—J
100 «

A

L BEFore is —|: ON —4|J
OFF «

A

|— AFTer is —E ON

OFF «

A

L .
RESEquence is ON
L OFF «

A

L AUThorization is —E ON
OFF «

2-10 CA-IDMS IDD DDDL Reference

2.4 SET OPTIONS statement

\4

L SECUrity for —— ADS is —[ON il—‘
— CULprit —————— OFF «

— 0LQ
— IDMS
— IDMS-DC ——————
— CLAss and attribute —
— IDD
— IDD SIGnon
'— LOAd MODule

A
v

L INDividual PASsword security OVErride is _I: OFF «
ON

A
v

L—[: REGistration __::I_ OVErride _
RESPonsibility

A

L]

ON ————
NOT ALLowed —

L USEr signon OVErride is —ﬁg ALLowed ¢«
OFF

A
v

L SEMicolon alternate end of sentence is _I: ON

OFF «
L EOF is /* ¢ 1
_IE eof-indicator —
OFF —M8M8M8 ™ —
l— FORMat is —[FIXED j—‘
FREE «

A
4

l— PUNch TO —[SYSpch ¢«
MODule module-name

HIGhest
LOWest

L— Version is _{E version-number ———J

> | >

|

|
L PASsword is password]

L[PROmpt _AI_‘
NO PROmpt

| LANguage is language I PREpared by user-id

A

Chapter 2. DDDL Compiler Options 2-11

2.4 SET OPTIONS statement

A

ECHo «
NO ECHo

v

v

A

i

HEAder
NO HEAder

LISt « j—‘
NO LISt

v

A
,_

LINes per page —[line-count
60 «

v

A

L CULprit AUTo ATTributes are _E
OFF «

v

A

L INPut columns are start-column-number THRu end-column-number i

v

A

L
OUTput Tine size is
—E 132

v

A

L JCL CODe is T $ ﬁ—‘
NULT «

v

A

L LEVel NUMbers are level-number _

v

A

1 ¢

NEXt HIGhest
—E LOWest ——l—

|— DEFault for NEW Version is —E version-number

A

1 ¢«

NEXt HIGhest
—E LOWest ——I_

L DEFault for EXIsting Version is —E version-number

v

A

L DISplay ALL LIMit is —E
OFF «

A

L INTerrupt count is —E max1mum record-count

NULT

v

2-12 CA-IDMS IDD DDDL Reference

2.4 SET OPTIONS statement

I

<

{— DISplay —l

E

WITh «
ALSo WI
WITHOut

—
Th E}

I

T
T

ALL COMment TYPes

ALL «
AREas
ATTributes
COBol
COMments
CULprit headers
DEFinitions
DEStinations
DETails
ELements
ENTRy points
FILes
HIStory
LINes
[eical -terminals 77—
LTErms
LRS
MAPs
MODuTes
MODules ONLy —
PROCesses
QFIles —
TABles
MODule SOUrce
NONe
0LQ headers
PANels
SCReens i
PHYsical-terminals :I____
PTErms
PICture OVErrides
PROCesses
PROgrams
PROgrams CALled
QFIles
QUEues
RECELements
RECords
RELated FILes
REMarks
REPorts
SAMe AS
SCHema
SETs
SUBOrdinate ELements
SUBSChemas
SYNonyms
SYStems
SUBSYstems

]

Chapter 2. DDDL Compiler Options 2-13

2.4 SET OPTIONS statement

TABTes
TASks
TRAnsactions
USErs

USEr DEFINED COMments
'L

UDCs —|—
USEr DEFINED NESts
' i B
— VIEws

UDNs
— WHEre USED

— WITHIn SYStem —_l_
[SUBSYstem
USEr —M8M8M8 ™ —

A\
A

L VERB

|
SYNtax

COMments ¢« :I

AS
DISplay | L
PUNch
ADD
MODify —
REPTace —
DELete

Parameters:

set OPTions for DICtionary

Establishes new default processing options for all DDDL compiler sessions that
access the current dictionary; installation defaults or defaults established with a
previous SET OPTIONS FOR DICTIONARY statement are overridden. To issue
SET OPTIONS FOR DICTIONARY statements, the user must be assigned
AUTHORITY FOR UPDATE IS ALL (see 4.28, “USER” on page 4-236). When
the issuing user has not been assigned the proper authority, the PREPARED BY
or REVISED BY clause must accompany this statement.

set OPTions for SESsion

Establishes temporary default processing options for a single DDDL compiler
session. Any user can issue the SET OPTIONS FOR SESSION statement.
However, some clauses require user authority (see 2.4.4, “SET OPTIONS
security” on page 2-33). When the issuing user has not been assigned the proper
authority, SET OPTIONS statements including such clauses must also include
PREPARED BY or REVISED BY specifications.

PREpared by user-id

Establishes a default PREPARED BY specification for all entity-type statements
issued in the current DDDL session and assigns the user authority to specify
secured clauses of the SET OPTIONS statement. If this clause is not specified,
the default PREPARED BY specification is the user 1D supplied in SIGNON
statement or the user ID known to the execution environment. PREPARED BY is
ignored if NOT ALLOWED is specified in the USER SIGNON OVERRIDE
clause. For more information about the PREPARED BY clause, see 3.3,
“Securing the dictionary” on page 3-7.

PASsword is password

Identifies the password assigned to the authorized user specified in the
PREPARED BY clause.

2-14 CA-IDMS IDD DDDL Reference

2.4 SET OPTIONS statement

REVised by user-id
Establishes a default REVISED BY specification for al entity-type statements
issued in the current DDDL session and assigns the issuing user authority to
specify secured clauses of the SET OPTIONS statement. |f this clause is not
specified, the default REVISED BY specification is the user ID supplied in the
SIGNON statement or the user ID known to the execution environment.
PREPARED BY isignored if NOT ALLOWED is specified in the USER
SIGNON OVERRIDE clause. For more information about the REVISED BY
clause, see 3.3, “Securing the dictionary” on page 3-7.

QUOte s
Defines the site-standard quote as a single quotation mark ().

QUOteis "
Defines the site-standard quote as a double quotation mark ().

DECimal-point is
Specifies the site-standard decimal-point character to be used in ELEMENT,
RECORD ELEMENT, and COBOL PICTURE and VALUE specifications.

PERiod
Establishes the period (.) as the default decimal-point character. The DDDL
compiler interprets periods as decimal points.

COMma
Establishes the comma (,) as the default decimal-point character. The DDDL
compiler interprets commas as insertion characters.

DELeteis
Specifies whether elements are deleted or retained when the only record
occurrence in which they participate is deleted.

ON
Deletes elements when the only record occurrence in which they participate is
deleted. The DDDL compiler, however, does not automatically delete elements
that participate in another record, have associated description text, have been
modified and have a nonblank date-last-updated field, or are associated with users,
attributes, ranges, other elements through nesting or any comment type.

OFF
Retains elements when the only record occurrence in which they participate is
deleted. To delete such elements, the user must issue individual DELETE
ELEMENT statements.

DEFault is
Specifies whether ADD statements that identify existing entity occurrences are
accepted or rejected.

ON
Accepts ADD statements that identify existing entity occurrences. The DDDL
compiler interprets such statements as MODIFY statements for the entity
occurrence and issues the message ADD CHANGED TO MODIFY.

Chapter 2. DDDL Compiler Options 2-15

2.4 SET OPTIONS statement

OFF
Rejects ADD statements that identify existing entity occurrences.

FIRst/SECond/THIrd/FOUrth ALTERNATE PICTURE KEYWORD IS
'alter nate-format-keyword'
Establishes up to four keywords that can be used within ELEMENT and
RECORD statements to identify alternative formats for the object element or for
all elements within the object record. Alternate-format-keyword isa 1 to 16
character user-defined keyword enclosed in quotation marks that characterizes the
desired format (for example, 'NUMERIC EDITED' or 'ZONED DECIMAL'). To
issue this clause, the user must be assigned AUTHORITY FOR UPDATE IS
ALL.

SEQuence is sequence
Establishes the starting and increment values for line numbers associated with
entries in record-element structures, comment text, and module source. Sequence
must be a 1 to 5 digit integer.

BEForeis
Specifies whether text is to be printed before it is erased by an EDIT clause.

ON
Specifies that text to be erased or replaced by an EDIT clause instruction is to be
printed before it is erased.

OFF
Specifies that text to be erased or replaced by an EDIT clause instruction is not to
be printed before it is erased. The user can include a SHOW instruction within
individual EDIT clauses to override the SET OPTIONS BEFORE value.

AFTer is
Specifies whether to print new text after it is inserted or replaced by an EDIT
clause instruction.

ON
Specifies that the new text to be inserted or replaced by an EDIT clause
instruction is to be printed after it is inserted or replaced.

OFF
Specifies that the new text to be inserted or replaced by an EDIT clause
instruction is not to be printed after it is inserted or replaced.

The user can include a SHOW instruction within individual EDIT clauses to
override the SET OPTIONS AFTER value.

RESEquence is
Specifies whether al instructions in an EDIT clause are resequenced after
modification.

ON
Specifies that text to be modified by an EDIT clause instruction is to be
resequenced after all instructions within the requested EDIT clause have been
compl eted.

2-16 CA-IDMS IDD DDDL Reference

2.4 SET OPTIONS statement

OFF
Specifies that text to be modified by an EDIT clause instruction is not to be
resequenced after all instructions within the requested EDIT clause have been
completed.

You can include a SEQUENCE instruction within individual EDIT clauses to
override the SET OPTIONS RESEQUENCE value.

AUThorization is
Specifies guidelines for accepting or rejecting programs based on whether they are
defined in the dictionary.

ON
Directs CA-IDMS DML precompilers to accept only programs defined in the
dictionary (those represented by occurrences of the PROGRAM entity type in the
dictionary).

OFF
Directs CA-IDMS DML precompilers to accept any program.

SECUrity for
Specifies whether security is to be enabled for IDD, CA-IDMS, and
CA-IDMS/DC system entity types, the DDDL compiler, the CA-IDMS schema
compiler, the CA-IDMS subschema compiler, and for CA-ADS, CA-CULPRIT,
and CA-OLQ operations. The SECURITY FOR clause is repeatable.

ADS
Specifies that only users with ADS authority can access CA-ADS.

CULprit
Specifies that only users with CULPRIT authority can authorize other users to
access files and subschemas to run CA-CULPRIT reports. CA-CULPRIT runs
will access only authorized files and subschemas. CA-CULPRIT security can also
be used to restrict a user's ability to change record layouts and file definitions and
to restrict access to DDR reports. To change record layouts and file definitions,
the user must be assigned the CULPRIT OVERRIDES ARE ALLOWED option;
to access DDR reports, the user must be assigned the CULPRIT OVERRIDES
ARE ALLOWED option and must be authorized to access subschema
IDMSNWKA of schema IDMSNTWK version 1. For more information about the
CULPRIT OVERRIDES option, see 4.28, “USER” on page 4-236.

OLQ
Specifies that only users with OLQ authority can code USER statement clauses
that pertain to CA-OLQ. Additionaly, if SECURITY FOR OLQ ISON is
specified, CA-OLQ release 3.1 and later will enforce subschema and g-file
restrictions. See the CA-OLQ Reference for further details.

IDMs
Specifies that only users with IDMS authority can register programs with
subschemas and use the CA-IDMS schema compiler and/or the CA-IDMS
subschema compiler.

Chapter 2. DDDL Compiler Options 2-17

2.4 SET OPTIONS statement

IDMS-DC
Specifies that only users with IDMS-DC authority can access occurrences of the
DESTINATION, LINE, LOGICAL-TERMINAL, MAP, MESSAGE, PANEL,
PHY SICAL-TERMINAL, QUEUE, and TASK entity types.

CLAss and attribute
Specifies that only users with CLASS AND ATTRIBUTE authority can access
occurrences of the ATTRIBUTE, CLASS, and user-defined entity types.

IDD
Specifies that only users with IDD authority can access occurrences of the
ELEMENT, FILE, MODULE, QFILE, PROCESS, PROGRAM, RECORD,
SYSTEM, TABLE, and USER entity types.

IDD SIGnon
Specifies that only users with IDD SIGNON authority can sign on to the DDDL
compiler.

LOAd MODule
Specifies that only users with AUTHORITY FOR UPDATE IS LOAD MODULE
can access a load module in the dictionary. To issue this clause, the user must be
assigned AUTHORITY FOR UPDATE IS LOAD MODULE.

is ON
Specifies (as part of the SECURITY FOR clause) that user authorization is
required to access (ADD, MODIFY, REPLACE, DELETE, DISPLAY, PUNCH)
secured entity types or perform secured operations. If the authorized user has
been assigned a password, that password must be supplied in the accompanying
PREPARED BY/REVISED BY specification. User authority is established with
the USER statement (see 4.28, “USER” on page 4-236).

is OFF
Specifies (as part of the SECURITY FOR clause) that user authorization is not
required to access entity types specified in the SECURITY FOR clause.

INDividual PASsword security OVErrideis
Specifies whether users will be allowed to modify their own passwords.

OFF
Specifies that users cannot modify their own passwords unless they are assigned
AUTHORITY FOR UPDATE IS PASSWORD and, if the SET OPTIONS
statement specifies SECURITY FOR IDD IS ON, AUTHORITY FOR UPDATE
IS IDD.

ON
Specifies that users can modify their own passwords. To issue this clause, the
user must be assigned AUTHORITY FOR UPDATE IS ALL.

REGistration OVErride
Turns off entity-occurrence security for the DDDL compiler session. The user
cannot revoke this security override for the duration of the session. To issue this
clause, the user must be assigned AUTHORITY FOR UPDATE IS ALL. For a
detailed discussion of entity-occurrence security, see 3.3, “Securing the dictionary”
on page 3-7. RESPONSIBILITY is a synonym for REGISTRATION.

2-18 CA-IDMS IDD DDDL Reference

2.4 SET OPTIONS statement

USEr signon OVErrideis
Indicates whether CA-IDMS/DB will allow users to specify a different user ID in
a SIGNON statement from the one known to the environment in which the
compiler is executing (the DC/UCF system for online, the batch environment for
batch).

ALLowed
Users may sign on to the compiler with a different user ID from the ID known to
the execution environment and user-specification clauses may be used to override
the default user ID. ALLOWED is the default. ON is a synonym for
ALLOWED.

NOT ALL owed
CA-IDMS/DB will not allow the user ID to be changed. Users who are already
known to the environment cannot specify a different user ID in the SIGNON
statement. Additionally, user-specification clauses cannot be used to change the
default user ID. OFF is a synonym for NOT ALLOWED.

SEMicolon alternate end of sentenceis
Indicates whether the semicolon is to be recognized as an aternative
end-of-statement character.

ON
Specifies that both semicolons and periods are to be recognized as
end-of-statement characters.

OFF
Specifies that the semicolon is not recognized as an aternative end-of-statement
character. OFF is the defaullt.

EOF is

Overrides the default logical end-of-file indicator established at IDD installation.
/~k

Indicates the default logical end-of-file indicator.

eof-indicator
Specifies an end-of-file indicator.

OFF (online IDD only)
Specifies that there is no active end-of-file indicator.

FORMat is
Establishes the default format for DISPLAY/PUNCH verb output.

FIXED
Lists DISPLAY/PUNCH output in columnar format.

FREE
Lists DISPLAY/PUNCH output as running text.

PUNch TO
Specifies the default destination for PUNCH verb output.

Chapter 2. DDDL Compiler Options 2-19

2.4 SET OPTIONS statement

SY Spch
Directs PUNCH verb output to the SYSPCH file. SYSPCH is the default
destination established during IDD installation.

MODULE module-name
Directs PUNCH verb output to an IDD module. Module-name must be the 1-
through 32-character name of a module that has been defined in the dictionary
with a MODULE statement (see 4.16, “MODULE (PROCESS/QFILE/TABLE)”
on page 4-92). The following rules apply to the module named as the PUNCH
verb destination:

® Once the module has been named as the destination of the PUNCH command,
it cannot be modified, replaced, or deleted.

= A module cannot be punched to itself.

If module source code is already associated with the named module, the DDDL
compiler adds the PUNCH verb output to the end of the existing source. If module
source does not exist, the DDDL compiler generates a header, which contains the
date and time that the initial punched output was created; the punched output
follows this header.

L ANguage is language
Specifies a language to be associated with the named module.

PREpared by user-id
Identifies the user who defined the module.

PASsword is 'password'
Specifies the password of the identified user; mandatory if a password is
associated with the user.

PROmMpt
Specifies use of the word ENTER to prompt users for input. The PROMPT
option is useful for local TSO VM/ESA operations or with dial-up devices.

NO PROmpt
Specifies no user prompt.

ECHo
Redisplays each input line the compiler reads. This is useful when DDDL
statements are input one line at a time (for example, under TSO or VM/ESA, or
from a hard-copy terminal).

NO ECHo
Specifies no redisplay of input lines even if the line contains an error. Suppresses
execution of the EJECT and SKIP carriage control statements.

LIst
Redisplays each line read by the compiler.

NO LISt
Specifies no redisplay of input lines unless a line contains errors. Suppresses
execution of the EJECT and SKIP carriage control statements.

2-20 CA-IDMS IDD DDDL Reference

2.4 SET OPTIONS statement

HEAder
Specifies that the header lines that identify the DDDL compiler are to be printed
on the IDD Activity List.

NO HEAder
Specifies that the header lines that identify the DDDL compiler are not to be
printed on the IDD Activity List. Thisis useful when DDDL statements are input
one line a atime (for example, under TSO or VM/ESA, or from a hard-copy
terminal).

LINes per page line-count
Specifies the number of lines per page as a SET OPTIONS FOR SESSION
option. The acceptable range for line-count is 10 through 60.

CULprit AUTo ATTributes are
For CA-CULPRIT users only, this parameter determines whether file definitions
are copied from the dictionary by CA-CULPRIT at runtime.

ON
Specifies that the file description, including such information as block size, record
size, recording mode, file and device types, or input module name, is to be copied
from the dictionary at runtime.

OFF
Specifies that the file description is not copied from the dictionary at runtime.

INPut columns are start-column-number THRu end-column-number
Specifies the starting and ending columns for DDDL compiler input (and output
with the exception of error messages). The maximum input column range is 1
through 80 for batch and line mode and 1 through 79 for full-screen mode. The
default column range established at installation is 1 through 72 for batch mode, 1
through 80 for line mode, and 1 through 79 for full-screen mode. The
continuation character (+) need not be coded in column 1; it can appear anywhere,
provided that it is the first entry on the line. The user can select any value within
the allowable range for start-column-number and end-column-number; the
minimum number of characters allowed between low and high columns is ten.

OUTput line size is
Specifies an output line size for error messages. The line size for all other DDDL
output is determined by the INPUT COLUMNS ARE clause.

80
Specifies an error message line size of 80 columns for the online compiler. The
DDDL compiler does not list the line numbers of erroneous lines when it issues
error messages, the error message, however, always appears on the line
immediately below the erroneous line.

132
Specifies an error message line size of 132 columns for the batch compiler.

JCL CODeis
Specifies whether a dollar sign ($) in the first column of module source or EDIT
clause input will be recognized as JCL or input data.

Chapter 2. DDDL Compiler Options 2-21

2.4 SET OPTIONS statement

$
Specifies that a dollar sign in column one of module source or EDIT clause input
is to be trandated to a slash (/) when it is stored in the dictionary. Typicaly, this
option is used to ensure that the operating system does not interpret input data as
JCL.

NULI

Specifies that a dollar sign in column one is to be treated as input data; that is, the
dollar sign is not translated to a slash when it is stored in the dictionary.

LEVe NUMbers are
Specifies the values to be associated with corresponding hierarchical depths in
record-element structures.

level-number
Specifies a two-digit integer in the range 02 through 49; used with the LEVEL
NUMBERS clause. In order to request a range of level numbers, the entire
sequence of numbers must be explicitly coded; up to 48 level numbers can be
specified in ascending order. |f fewer than 48 level numbers are coded, 49 is the
default. The LEVEL NUMBERS specification does not modify level numbersin
existing record elements.

DEFault for NEW Version is
Establishes a default version number for the VERSION parameter of the NAME
clause in ADD statements.

version-number
Specifies that the DDDL compiler is to assign a new entity occurrence the
specified version number; version-n must be an integer in the range 1 through
9999.

NEXt HIGhest
Specifies that the DDDL compiler is to assign a new entity occurrence the highest
version number associated with the specified entity-occurrence name, plus 1. If
NEXT is the only keyword coded, NEXT HIGHEST is assumed. Because NEXT
HIGHEST creates a new version, if the requested entity occurrence exists in the
dictionary, the DDDL compiler does not issue the ADD CHANGED TO MODIFY

message.

NEXt LOWest
Specifies that the DDDL compiler is to assign a new entity occurrence the lowest
version number associated with the specified entity-occurrence name, minus 1.
Because NEXT LOWEST creates a new version, if the requested entity occurrence
exists in the dictionary, the DDDL compiler does not issue the ADD CHANGED
TO MODIFY message.

DEFault for EXlsting Version is
Establishes a default version number to be used in any statement or clause that
references an existing entity occurrence.

version-number
Specifies use of the specified version number; version-number must be an integer
in the range 1 through 9999.

2-22 CA-IDMS IDD DDDL Reference

2.4 SET OPTIONS statement

HIlGhest
Specifies use of the highest version number associated with the specified
entity-occurrence name.

LOWest
Specifies use of the lowest version number associated with the specified
entity-occurrence name.

DiISplay ALL LIMit is
Indicates whether the DDDL compiler will limit the number of records to be
retrieved using a DISPLAY ALL statement.

ON
Specifies that the number of records retrieved by a DISPLAY ALL statement will
be limited to the number of records specified in the INTERRUPT COUNT clause.

OFF
Specifies that the number of records retrieved by a DISPLAY ALL statement is
not limited. OFF is the default.

INTerrupt count is
Specifies the maximum number of records to be retrieved using a DISPLAY ALL
statement when the DISPLAY ALL LIMIT is ON.

maxi mum-r ecor d-count
Specifies a maximum number for INTERRUPT COUNT. Maximum-record-count
can be any number, including O.

NULI
Sets the maximum-record-count to 0.

DI Splay
Supplies default values for DISPLAY/PUNCH clauses. This clause is positional;
it must be coded as the last clause in a SET OPTIONS statement. You can select
one or more entity options for display, but you cannot repeat an option.

WITh
Lists the requested information. All options specified in previously issued
DISPLAY WITH and DISPLAY ALSO WITH statements are replaced.

ALSo WITh
Lists the requested information in addition to any information requested in
previously issued DISPLAY WITH and DISPLAY ALSO WITH statements.

WITHOut
Excludes the specified information from the information requested in previously
issued DISPLAY WITH and DISPLAY ALSO WITH statements.

ALL
Specifies the display of all of the information associated with the reguested entity
occurrence. ALL is the default.

ALL COMment TYPes
Specifies the display of all comment entries (COMMENTS, DEFINITIONS,
ELEMENT DEFINITIONS, CULPRIT HEADERS, OLQ HEADERS, REMARKS,
and user-defined comment keys) associated with the requested entity occurrence.

Chapter 2. DDDL Compiler Options 2-23

2.4 SET OPTIONS statement

AREas
Specifies the display of all database areas associated with the requested entity
occurrence.

ATTributes
Specifies the display of all attributes associated with the requested entity
occurrence.

COBal
Specifies the display of record elements associated with the requested record
occurrence displayed in COBOL format. This parameter applies only to RECORD
entities.

COMments

Specifies the display of all comments associated with the requested entity
occurrence.

CULprit headers
Specifies the display of all CULPRIT headers associated with the requested record
element. This parameter applies to record elements only.

DEFinitions
Specifies the display of al definitions associated with the requested entity
occurrence.

DEStinations
Specifies the display of all destinations associated with the requested entity
occurrence.

DETails
Specifies the display of entity-specific descriptions; for example, the length of a
record or the block size of afile.

EL ements
Specifies the display of all elements associated with the requested entity
occurrence.

ENTRYy points
Specifies the display of all entry points associated with the requested entity
occurrence.

FlLes
Specifies the display of all files associated with the requested entity occurrence.

HIStory
Specifies the display of the chronological account of an entity's existence,
including PREPARED/REVISED BY specifications, date created, and date last
updated. For programs, HISTORY also includes the number of times the program
has been compiled and the date of the last compilation.

LINes
Specifies the display of all lines associated with the requested entity occurrence.

LOGical-terminals
Specifies the display of al logical terminals associated with the requested entity
occurrence.

2-24 CA-IDMS IDD DDDL Reference

2.4 SET OPTIONS statement

LRS
Specifies the display of all of the logical records associated with the requested
program. This parameter only applies to PROGRAM entities.

MAPS
Specifies the display of all maps associated with the requested entity occurrence.

MODules
Specifies the display of all modules, processes, g-files, or tables associated with
the requested entity occurrence.

MODules ONLy
Optionally limits the list to modules with a language specification other than
PROCESS, OLQ, or TABLE.

M ODule SOUrce
Specifies the display of the source statements associated with the requested
module, process, or g-file. This parameter only applies to MODULE, PROCESS,
and QFILE entities.

NONE
Specifies the display of the name of the requested entity occurrence. NONE is
meaningful only when WITH is specified.

OLQ headers
Specifies the display of all OLQ headers associated with the requested record
element. This parameter applies to record elements only.

PANels
Specifies the display of all panels (screens) associated with the requested entity
occurrence. SCREENS is a synonym for PANELS.

PHYsical-terminals
Specifies the display of all physical terminals associated with the requested entity
occurrence. PTERMS is a synonym for physical-terminals.

PICture OVErrides
Specifies the display of the PICTURE, USAGE, VALUE, JUSTIFY, SIGN,
BLANK WHEN ZERO, LINE IS, SUBORDINATE ELEMENT REDEFINES, and
SUBORDINATE ELEMENT OCCURS specifications associated with the
regquested record element. This parameter only applies to RECORD entities.

PROCesses
Specifies the display of all processes associated with the requested entity
occurrence.

PROgrams
Specifies the display of all programs associated with the requested entity
occurrence.

PROgrams CALled
Specifies the display of all of the subprograms associated with the requested
program. This parameter applies to PROGRAM entities only.

Chapter 2. DDDL Compiler Options 2-25

2.4 SET OPTIONS statement

QFlles
Specifies the display of all g-files associated with the requested entity occurrence.

QUEues
Specifies the display of all queues associated with the requested entity occurrence.

RECELems
Specifies the display of record detail information and all record elements
associated with the requested record occurrence. This parameter applies only to
RECORD entities.

RECords
Specifies the display of all records associated with the requested entity occurrence.

RELated FlLes
Specifies the display of all of the relationships created with the RELATED FILES
ARE clause of the FILE statement for the requested file.

REMarks
Specifies the display of all remarks associated with the requested program. This
parameter applies to PROGRAM entities only.

REPorts
Specifies the display of all reports associated with the requested entity occurrence.

SAMe AS
Specifies the display of all of the relationships that exist between the entities that
are the source and target of a SAME AS clause; for information on the SAME AS
clause, see 3.5, “Copying and editing entity occurrences’ on page 3-22.

SCHemas
Specifies the display of all schemas associated with the requested entity
occurrence.

SETs
Specifies the display of all sets associated with the requested entity occurrence.

SUBOrdinate EL ements
Specifies the display of all of the subordinate elements associated with the
requested group element. This parameter applies to ELEMENT entities only.

SUBSChemas
Specifies the display of all subschemas associated with the requested entity
occurrence.

SYNonyms
Specifies the display of al of the synonyms associated with the requested entity
occurrence. If the requested entity occurrence is an attribute, record synonyms
associated with that attribute apply. This parameter only applies to ELEMENT,
FILE, and RECORD ertities.

SY Stems
Specifies the display of all systems or subsystems associated with the requested
entity occurrence. SYSTEMS and SUBSY STEMS are synonyms.

2-26 CA-IDMS IDD DDDL Reference

2.4 SET OPTIONS statement

TABles
Specifies the display of all tables associated with the requested entity occurrence.

TASks
Specifies the display of all tasks associated with the requested entity occurrence.

TRAnRsactions
Specifies the display of all transactions associated with the requested entity
occurrence.

USErs
Specifies the display of all users associated with the requested entity occurrence.

USEr DEFINED COMments
Specifies the display of all user-defined comment keys associated with the
reguested entity occurrence. This parameter only applies to entities with
user-defined comment keys. UDCS is a synonym for USER DEFINED
COMMENTS.

USEr DEFINED NESts
Specifies the display of all of the user-defined nests associated with the requested
entity occurrence. This parameter only applies to entities with relational keys.
UDNS is a synonym for USER DEFINED NESTS.

WHEre USED
Specifies the display of all relationships in which the requested entity occurrence
participates as a subordinate element, program called, related file, attribute,
user-defined nest, or user or system within another user or system.

This parameter only applies to ATTRIBUTE, ELEMENT, FILE, MODULE,
PROGRAM, RECORD, SYSTEM, USER, and user-defined entities.

WITHin SY Stem
Specifies the display of all system (subsystem) occurrences related to the
requested system/subsystem by means of the WITHIN SYSTEM clause. This
parameter applies to SY STEM/SUBSY STEM entities only. SUBSY STEM and
SYSTEM are synonyms and can be used interchangesbly.

WITHIn USEr
Specifies the display of all users with whom the requested user has been related
by means of the WITHIN USER clause. This parameter applies to USER entities
only.

VERB DI Splay/PUNch/ADD/M ODify/REPlace/DEL ete
Specifies the default verb to accompany DISPLAY/PUNCH verb output.

AS SYNtax
Specifies that information listed in response to a DISPLAY/PUNCH request
appears as DDDL syntax. By displaying entity-occurrence definitions as syntax,
the user can edit existing definitions and resubmit them to the DDDL compiler.

AS COMments
Specifies that DISPLAY/PUNCH output appears as comments (which are ignored
by the DDDL compiler). Each line is preceded by an asterisk and a plus sign (*+)
in the first two columns.

Chapter 2. DDDL Compiler Options 2-27

2.4 SET OPTIONS statement

Example: The following SET OPTIONS statement establishes default processing
options for one session. Specifications are given that instruct the DDDL compiler to
list DISPLAY/PUNCH output in syntax format and accept input in columns 2 through
65.

set options for session

input columns are 2 thru 65
display as syntax.

Usage:

Order of SET OPTIONS parameters: The parameters of the SET OPTIONS
statement can be coded in any order, with the exception of the DISPLAY clause,
which must appear as the last clause in a SET OPTIONS statement.

Considerations for alternate picture keywords: Subsequently issued SET
OPTIONS statements can change existing alternate picture keywords. Note, however,
that all elements and record elements that have been assigned alternative formats retain
those formats unless the element or record-element definition is explicitly changed.

For example, if an element definition specifies PICTURE 1S 'NUMERIC EDITED', the
format remains unchanged, regardiess of whether a SET OPTIONS FIRST
ALTERNATE PICTURE KEYWORD statement establishes a new keyword.

DELETE IS ON usage and cautions: DELETE IS ON provides a convenient
means of deleting record elements that have been added to the dictionary with the
COBOL substatement. Because the COBOL substatement automatically associates
elements with records, elements associated with deleted records need not be
maintained.

»» For a detailed description of the COBOL substatement, see 4.23, “RECORD
(REPORT/TRANSACTION)” on page 4-163.

To avoid the inadvertent deletion of elements, select DELETE IS ON only on an
as-needed basis, immediately thereafter, specify DELETE IS OFF.

Overriding PREPARED BY and REVISED BY clauses: You can override the
default PREPARED BY specification by including a PREPARED BY clause in
individual ADD, MODIFY, REPLACE, DELETE, and DISPLAY/PUNCH statements.

You can override the default REVISED BY specification by including a REVISED BY
clause in individual ADD, MODIFY, REPLACE, DELETE, and DISPLAY/PUNCH
Statements.

Overrides to PREPARED BY and REVISED BY clauses are recognized only if
ALLOWED is specified in the USER SIGNON OVERRIDE clause.

2-28 CA-IDMS IDD DDDL Reference

2.4 SET OPTIONS statement

Overriding SEQUENCE values:

The user can include the following instructions within individual EDIT clauses to
override the SET OPTIONS SEQUENCE vaue:

» SEQUENCE overrides sequence default for al EDIT clause instructions.

® INCREMENT BY in an INSERT or REPLACE instruction overrides, for that
instruction only, the default established by the SET OPTIONS statement or by the
SEQUENCE instruction.

Overriding the default PUNCH destination: The user can include a TO
SY SPCH/MODULE clause within individual PUNCH statements to override the
default PUNCH destination.

WHERE USED guidelines: WHERE USED must accompany a request to display
SUBORDINATE ELEMENTS, PROGRAMS CALLED, RELATED FILES,
ATTRIBUTES, USER-DEFINED NESTS, or WITHIN USER or WITHIN SYSTEM.

If WHERE USED is not specified, a request for SUBORDINATE ELEMENTS,
PROGRAMS CALLED, RELATED FILES, ATTRIBUTES, USER-DEFINED NESTS,
or WITHIN USER or WITHIN SYSTEM displays the programs called by, elements
subordinate to, files, attributes, and user-defined nests related to, and users and systems
within the requested entity occurrence.

For example, DISPLAY PROGRAM PAYROLL WITH PROGRAMS CALLED lists
the programs called by the program named PAYROLL; DISPLAY PROGRAM
PAYROLL WITH PROGRAMS CALLED WHERE USED lists the programs that call
the program PAYROLL.

Overriding DISPLAY/PUNCH options: You can include these clauses in individual
DISPLAY/PUNCH statements to override the specified options:

. WITH/ALSO WITH/WITHOUT

= VERB

B AS SYNTAX/COMMENTS

2.4.3 SET OPTIONS defaults and overrides

The IDD installation procedure establishes defaults for most of the DDDL compiler
processing options. These defaults remain in effect until they are explicitly changed
for one of the following:

® Dictionary — you can specify a SET OPTIONS FOR DICTIONARY statement
to establish default options for all DDDL compiler sessions that access the current
dictionary.

Note: Any option you can specify under SET OPTIONS FOR DICTIONARY
you can aso specify under SET OPTIONS FOR SESSION.

Chapter 2. DDDL Compiler Options 2-29

2.4 SET OPTIONS statement

® Single session — you can specify a SET OPTIONS FOR SESSION statement to
establish default options for the current DDDL session only.

Note: If you try to use SET OPTIONS FOR DICTIONARY when only SET
OPTIONS FOR SESSION is permitted, IDD applies the option to your
current session.

= Single statement — you can specify optional clauses in an entity-type statement

to establish processing options for that statement only.

The following table lists DDDL compiler processing options, their installation default
values, and the ways you can change the defaults. Installation defaults are for batch
and online processing, unless otherwise noted.

SET OPTIONS
clause

Default

Overrides possible for:

Dictionary

Session

Statement

AFTER IS

OFF

X

X

X

AUTHORIZATION OFF

IS

X

BEFORE IS

OFF

CULPRIT
AUTO
ATTRIBUTES
ARE

OFF

DECIMAL-
POINT 1S
PERIOD/COMMA

PERIOD

DEFAULT FOR
EXISTING
VERSION IS

DEFAULT FOR
NEW
VERSION IS

DEFAULT IS

OFF

DELETE IS

OFF

DISPLAY ALL
LIMIT

OFF

DISPLAY AS
SYNTAX/
COMMENTS

COMMENTS

2-30 CA-IDMS IDD DDDL Reference

2.4 SET OPTIONS statement

SET OPTIONS Default Overrides possible for:
clause
Dictionary | Session Statement

DISPLAY WITH ALL X X
WITH/ ALSO
WITH/
WITHOUT
DISPLAY ADD X X
VERB
ECHO/NO ECHO X
ECHO
EOF IS /* (batch)
FIRST/SECOND/ No defaults
THIRD/FOURTH
ALTERNATE
PICTURE

KEYWORD
FORMAT IS FREE X X
FIXED/FREE
HEADER/ NO HEADER (batch) X
HEADER NO HEADER (onh'ne)
INPUT 1-72 (batch) X
COLUMNS 1-80 (onhne)
ARE
INTERRUPT 0 X X X
COUNT IS
JCL CODE IS NULL
LEVEL 02-49 X X
NUMBERS
ARE
LINES PER 60 X
PAGE
LIST/NO LIST LIST
OUTPUT LINE 132 (batch)
SIZE IS 80 (onhne)
PASSWORD OFF X
SECURITY
OVERRIDE

Chapter 2. DDDL Compiler Options 2-31

2.4 SET OPTIONS statement

SET OPTIONS Default Overrides possible for:
clause
Dictionary | Session Statement
PREPARED No defaults X X
BY/ REVISED
BY
PROMPT/ NO NO PROMPT (batch) X
PROMPT NO PROMPT

(online; 3270)
PROMPT
(online; line mode)

PUNCH TO SY SPCH X X
QUOTE IS ' X X
RESEQUENCE OFF

IS

REGISTRATION No default X

OVERRIDE

SECURITY OFF X X

FOR

SEMICOLON OFF X X
ALTERNATE

SEQUENCE IS 100 X X X
USER SIGNON ON X X

OVERRIDE

Overriding clauses: The following DDDL clauses override defaults established by
the SET OPTIONS FOR SESSION statement:

The PREPARED/REVISED BY clause of
ADD/MODIFY/REPLACE/DELETE/DISPLAY/PUNCH

The SHOW instruction of the EDIT clause
The SEQUENCE instruction of the EDIT clause

The INCREMENT BY parameter of the INSERT and REPLACE instruction of
the EDIT clause

The WITH/ALSO WITH/WITHOUT clause of DISPLAY/PUNCH

The VERB clause of DISPLAY/PUNCH

The AS SYNTAX/COMMENTS clause of DISPLAY/PUNCH

The TO clause of PUNCH

The VERSION clause of ADD/MODIFY/REPLACE/DELETE/DISPLAY/PUNCH

2-32 CA-IDMS IDD DDDL Reference

2.4 SET OPTIONS statement

2.4.4 SET OPTIONS security

You must have explicit update authority to submit certain SET OPTIONS clauses.
The following table lists the applicable clauses and the required authority.

SET OPTIONS clause

Required UPDATE authority

SET OPTIONS FOR DICTIONARY ALL
FIRST/SECOND/THIRD/FOURTH ALL
ALTERNATE PICTURE KEYWORD

CULPRIT AUTO ATTRIBUTES CULPRIT
REGISTRATION OVERRIDE ALL
PASSWORD SECURITY OVERRIDE ALL
SECURITY FOR ADS ALL

SECURITY FOR CLASS AND
ATTRIBUTE

CLASS AND ATTRIBUTE

SECURITY FOR CULPRIT CULPRIT
SECURITY FOR IDD IDD
SECURITY FOR IDD SIGNON IDD SIGNON
SECURITY FOR IDMS IDMS
SECURITY FOR IDMS-DC DC
SECURITY FOR LOAD MODULE ALL
SECURITY FOR OLQ OLQ

USER SIGNON OVERRIDE ALL
DISPLAY ALL LIMITS ALL
INTERRUPT COUNT ALL

Chapter 2. DDDL Compiler Options 2-33

2.5 DISPLAY/PUNCH OPTIONS statement

2.5 DISPLAY/PUNCH OPTIONS statement

The DISPLAY/PUNCH OPTIONS statement lists, as a SET OPTIONS statement, the
default processing options in effect for the current DDDL compiler session or
dictionary.

Syntax: DISPLAY/PUNCH OPTIONS statement

»—l: DISplay OPTions for SESsion < T
PUNch T L DICtionary -

v

WITh « DETails 1L AS —[SYNtax —J—‘
ALSo WITh] COMments «

WITHOut

Parameters:

DI Splay/PUNch OPTions for
Lists the default processing options established with the SET OPTIONS statement
or during IDD installation.

SESsion
Specifies that the options in effect for the current DDDL session are listed along
with signon information, including user name, dictionary name, node name, and
usage mode. This s the default.

DICtionary
Specifies that the options in effect for the current dictionary are listed along with
the date the dictionary was created and the date of its most recent update.

WITh DETails
Specifies that all default processing options in effect for the session or for all
sessions are listed.

ALSo WITh DETails
Specifies that all default processing options in effect for the session or for all
sessions are listed.

WITHOut DETails
Specifies that only the statement SET OPTIONS FOR SESSION/DICTIONARY is
listed.

AS SYNtax
Specifies that DISPLAY/PUNCH OPTIONS output is to be formatted as syntax
(meaning that you can edit and resubmit the statements).

AS COMments
Specifies that DISPLAY/PUNCH OPTIONS output is to be formatted as
comments (meaning that the DDDL compiler ignores the statements).

Example: The following example illustrates the output associated with a DISPLAY
OPTIONS statement.

2-34 CA-IDMS IDD DDDL Reference

2.5 DISPLAY/PUNCH OPTIONS statement

display options for session.
*+ set options for session

*+ dictionary name is prod

*+ usage mode is update

*+ default for existing version is 1
*+ quote is '

*+ eof is '/x'

*+ default is off

*+ sequence is 100

*+ no prompt

*+ echo

*+ list

*+ header

*+ input columns are 1 thru 80
*+ output Tline size is 80

Chapter 2. DDDL Compiler Options 2-35

2.6 INCLUDE statement

2.6 INCLUDE statement

The INCLUDE statement temporarily suspends input to the batch or online DDDL
compiler and retrieves, as input to the compiler, source statements associated with an
existing IDD module. Modules are defined in the dictionary using the MODULE
statement (see 4.16, “MODULE (PROCESS/QFILE/TABLE)” on page 4-92). The
module source can contain any number of DDDL statements.

When all the module source has been included, the DDDL compiler continues
processing with the source statement immediately following the INCLUDE statement.

Syntax: INCLUDE statement

»»—— INCLUDe MODule module-name

L

HIGhest

L Version is ~E version-number —
LOWest

v

L LANguage is language]

\4
A

L PREpared by user-id C] |
PASsword is password

Parameters:

INCLUDe M ODule module-name
Specifies that the DDDL compiler is to include in the current input file the source
statements associated with the named module. Module-name must be the name of
an existing IDD module.

Version is
Qualifies nonunique module names.

ver sion-number
Specifies a specific version number for the module.

HIGhest
Specifies that the DDDL compiler is to use the highest version number associated
with the specified module.

LOWest
Specifies that the DDDL compiler is to use the lowest version number associated
with the specified module.

L ANguage is language-name
Qualifies the module name by language. This parameter is required if the module
has been defined with a language in the dictionary.

PREpared by user-name
Specifies the name of the user regquesting the INCLUDE operation. For a detailed
description of the PREPARED BY clause, see 3.3, “Securing the dictionary” on

page 3-7.

2-36 CA-IDMS IDD DDDL Reference

2.6 INCLUDE statement

PASsword is password
Specifies the password of the user requesting the INCLUDE operation.

Usage:

Restrictions on INCLUDE: The following restrictions apply to the INCLUDE
Statement:

» INCLUDE statements cannot appear within the module source; that is, INCLUDE
statements cannot be nested.

® The requested module cannot update its own module source.

If the module source being included contains a SIGNON statement to another
dictionary, the DDDL compiler terminates the INCLUDE operation and continues
processing with the statement immediately following the INCLUDE.

Example: The following example shows a DDDL compiler session in which the
user includes source statements associated with the module INCLUDE-TEST version 1
in the current DDDL input file. The definition of the module INCLUDE-TEST is
shown.
add module include-test version 1
prepared by wmc
module source follows
display all modules where name contains '-wmc'.
signon dict=b
modify user wmc.

msend.
The sample session follows:

signon dict=a
include module include-test version 1.
display file xyz version 2.

s%gnoff
Because module INCLUDE-TEST contains a SIGNON statement, the DDDL compiler

terminates the INCLUDE operation without executing the MODIFY USER WMC
statement; processing continues with the DISPLAY FILE XY Z statement.

Chapter 2. DDDL Compiler Options 2-37

2.7 COMMIT statement

2.7 COMMIT statement

COMMIT is useful in the following situations:

= When journaling in local mode, COMMIT writes a COMT checkpoint to the
journd file.

® Under the central version in batch mode, COMMIT releases update and exclusive
locks.

COMMIT facilitates recovery during DDDL compiler runs that process large amounts
of data. For more information about CA-IDMS/DB backup and recovery procedures,
see CA-IDMS Database Administration.

Syntax: COMMIT statement

v
A

»»—— COMMIT

2-38 CA-IDMS IDD DDDL Reference

Chapter 3. General DDDL Syntax Options

31 Overview ..o 33
3.2 ldentifying entity occurrences 34
321 NAMEclause 34
322 VERSION clause 34
3.2.3 Additional qualifiers 3-6
3.3 Securing the dictionary 3-7
3.3.1 PREPARED/REVISED BY clause 3-8
332 AUTHORITY clause 39
333 USERclause 3-10
334 PUBLICACCESSclause 3-13
3.4 Documenting entity occurrences 3-16
34.1 DESCRIPTION clause 3-16
342 COMMENTSC clause 3-17
343 TEXT clause 3-20
3.5 Copying and editing entity occurrences 3-22
351 SAMEASclause 3-22
352 COPY clause 3-24
353 EDITclause 3-25
3.5.4 INSERT ingruction of the EDIT clause 3-28
355 ERASE ingtruction of the EDIT clause 3-29
3.5.6 REPLACE instruction of the EDIT clause 3-29
3.5.7 LIST instruction of the EDIT clause 331
3.5.8 SEQUENCE instruction of the EDIT clause 331
359 SHOW instruction of the EDIT clause 3-32
3.6 Associating entity occurrences Lo 3-33
3.6.1 Reational keys 3-34
3.6.2 Attribute/entity relationships oL 3-38
3.7 Displaying entity occurrences 341
3.7.1 DISPLAY/PUNCH statement 3-42
3.7.2 DISPLAY/PUNCH ALL statement 3-44
3.7.3 WHERE clause (conditional expressions) 3-46
3.74 DISPLAY/PUNCH examples 3-51

Chapter 3. General DDDL Syntax Options 3-1

3-2 CA-IDMS IDD DDDL Reference

3.1 Overview

3.1 Overview

This chapter describes the DDDL syntax options that are common to all or many
DDDL entity-type statements. Because these general options are functionally the
same, regardless of the entity to which they apply, the rules presented below are not
repeated in the detailed syntax presentations in Chapter 4.

Functions and associated syntax options are shown in the following table.

Function Syntax option
Identify entity NAME and VERSION clauses
occurrences

Secure entity occurrences

PREPARED BY and REVISED BY clauses
AUTHORITY clause (USER statement)
USER cTause

PUBLIC ACCESS clause

Document
entity-occurrences

DESCRIPTION clause
COMMENTS clause
TEXT clause

Manipulate
entity-occurrences

SAME AS clause
COPY clause
EDIT clause

Establish or change
entity-occurrence
relationships

Relational keys
Attribute/entity relationships

Display entity occurrences

DISPLAY/PUNCH statement

These syntax options are described in this chapter.

Chapter 3. General DDDL Syntax Options 3-3

3.2 Identifying entity occurrences

3.2 Identifying entity occurrences

Each entity occurrence in the dictionary must be unique. Specific qualifying clauses
for each entity type allow you to make entity occurrences unique:

» All entity occurrences must be identified by name and, optionally, by version
number.

= Some entity occurrences require (or allow) additional qualifiers.

The NAME and VERSION clauses and additional qualifiers are described separately in
this section.

3.2.1 NAME clause

Each entity-type statement must include a name that identifies the object entity
occurrence in the dictionary. This name clause:
» Follows the verb and entity-type name

» Precedes all optiona clauses

Syntax: NAME clause

v
A

»—— NAMe is entity-occurrence-name

Parameters:

NAMe is
Identifies either a new entity occurrence to be added to the dictionary or an
existing entity occurrence to be modified, replaced, deleted, displayed, or punched.

entity-occurrence-name
Uniquely identifies the object entity in the dictionary; if the name includes
embedded blanks or delimiters, it must be enclosed in site-standard quote
characters. If the specified name is not unique, it must be qualified by a version
number (and/or additional qualifier); see 3.2.2, “VERSION clause” and 3.2.3,
“Additional qualifiers’ on page 3-6 for further details.

Example: In the following statement, the NAME clause assigns the name
PAYROLL to an occurrence of the SYSTEM entity type.

add system name is payroll.

3.2.2 VERSION clause

IDD supports the use of version numbers to accommodate entity occurrences that are
identically named but different in usage or format. For example, when designing and
testing a new application, the user can maintain several occurrences of the same entity
by assigning a unique version number to each occurrence. When the final definition is
approved, the user can retain the appropriate version in the dictionary, deleting all
other versions.

3-4 CA-IDMS IDD DDDL Reference

3.2 Identifying entity occurrences

Note: DDDL syntax does not support version number identification for the CLASS,
ATTRIBUTE, ENTRY POINT, MESSAGE, USER, and user-defined entity
types.

The VERSION clause permits the user to specify an explicit version number or the

next higher or lower number. The user can aso specify default version numbers for

the current session or dictionary by using the SET OPTIONS DEFAULT FOR NEW

VERSION and SET OPTIONS DEFAULT FOR EXISTING VERSION statements

(see 2.4.2, “SET OPTIONS syntax” on page 2-9).

If a version number is not specified within an entity-type statement, the version
number conventions described in Appendix D, “Default Version Number Conventions’

on page D-1, apply.

Syntax: VERSION clause

»—— \Version is version-number >
g ishest
NEXt LOWest

Parameters:

A

Version is version-number
Specifies a unique integer in the range 1 through 9999.

NEXt
When added to HIGHEST (NEXT HIGHEST), specifies the highest version
number associated with the entity occurrence, plus 1. When added to LOWEST
(NEXT LOWEST), specifies the lowest version number associated with the entity
occurrence, minus 1. If only NEXT is specified, NEXT HIGHEST is assumed.
This parameter is used only with the ADD statement or with the NEW NAME or
NEW VERSION clauses.

HIGhest
Specifies the highest version number associated with the object entity occurrence.
If NEXT HIGHEST is specified and the object entity occurrence does not exist in
the dictionary, the DDDL compiler assigns a version number of 1.

LOWest
Specifies the lowest version number associated with the object entity occurrence.
If NEXT LOWEST is specified and the object entity occurrence does not exist in
the dictionary, the DDDL compiler assigns a version number of 9999.

Examples: Assuming that versions 3, 8, 9, 11, and 23 of element ACCT-NUMBER
exist in the dictionary, this statement implicitly requests version 23.

modify element account-number
version is highest.

Assuming that versions 420, 440, and 460 of record EMP-NAME exist in the
dictionary, this statement implicitly assigns version 461.

add record emp-name
version is next highest.

Chapter 3. General DDDL Syntax Options 3-5

3.2 Identifying entity occurrences

3.2.3 Additional qualifiers

Some entity types require or alow qualifiers in addition to those specified using the
NAME and VERSION clauses. These entity types and their corresponding qualifiers
are shown in the following table.

Entity type Additional qualifier Notes

ATTRIBUTE WITHIN CLASS Required when ADD/CREATE is
specified. Required for other
verbs when the attribute that is
specified is not unique in the
dictionary.

LOAD MODULE MODULE TYPE Optional; if MODULE TYPE is
specified, the compiler makes sure
the load module named in a
MODIFY/ALTER or
DELETE/DROP statement is of

the same type.

MAP WITHIN PANEL Required when ADD/CREATE is
specified.

MODULE LANGUAGE Required if a version of

HIGHEST or LOWEST is
specified or defaulted to.

TYPE Required when ADD/CREATE is
specified.

»> For more information about the qualifiers shown in the previous table, see the
syntax and parameter descriptions for the corresponding entity types in Chapter 4,
“Entity-Type Syntax” on page 4-1.

3-6 CA-IDMS IDD DDDL Reference

3.3 Securing the dictionary

3.3 Securing the dictionary

IDD provides security features that facilitate the protection of the data resource from
unauthorized access, modification, or deletion, as follows:

Entity-type security

Allows the data administrator to secure access to the CLASS, ATTRIBUTE, and
LOAD MODULE entities and to one or more CA-IDMS/DB, CA-IDMS/DC, and
IDD entities. The data administrator can also restrict access to the DDDL
compiler, CA-IDMS/DB and CA-ADS system components, and OLQ and
CULPRIT operations. Entity-type security is controlled by the SET OPTIONS
statement SECURITY FOR clause described under 2.4.2, “SET OPTIONS syntax”
on page 2-9.

If the SET OPTIONS statement specifies a SECURITY IS ON option, only a user
with the proper authority can access the secured entity or entity group or can
perform the secured operation. |f the authorized user has been assigned a
password, that password must be provided. User authority is established with the
USER statement AUTHORITY clause, which defines the entity group or entity
types to which the user has access and specifies the type of access permitted (that
is, the verbs the user can issue). For a description of the AUTHORITY clause,
see 4.28, “USER” on page 4-236. If the SET OPTIONS statement specifies
SECURITY IS OFF, user authority is not required; however, the data
administrator can secure individual entity occurrences, as described below.

Entity-occurrence security

Controls user access to individual entity occurrences. The data administrator can
apply entity-occurrence security to occurrences of al entity types except CLASS,
LOAD MODULE, MESSAGE, and USER. The data administrator controls
entity-occurrence security by means of the USER and PUBLIC ACCESS clauses
within individual entity-type statements.

Password protection

Prohibits a user from adding or changing passwords for other users and from
assigning other users the authority to access secured entity types or to perform
secured operations. Password authority is established with the AUTHORITY
clause of the USER statement. Typically, only one user has password authority;
that user will control all passwords. However, the data administrator can activate
a password security override to allow users to modify their own passwords. If the
SET OPTIONS statement specifies INDIVIDUAL PASSWORD SECURITY
OVERRIDE IS ON, users need no authority to modify their own passwords; the
INDIVIDUAL PASSWORD SECURITY OVERRIDE clause is described under
2.4.2, “SET OPTIONS syntax” on page 2-9.

The DDDL clauses in the following table govern security. Each of these clauses is
described separately in this section.

Chapter 3. General DDDL Syntax Options 3-7

3.3 Securing the dictionary

This clause Governs security by:

PREPARED/ Supplying additional user names and passwords to be
REVISED BY used in IDD security

AUTHORITY Assigning users authority to access secured entity types

and perform secured operations

USER Registering users with an entity occurrence and
establishing the extent to which users can access or
update the named entity occurrence

PUBLIC ACCESS Specifying the extent to which unregistered users can
access or update an entity occurrence

3.3.1 PREPARED/REVISED BY clause

The PREPARED/REVISED BY clause supplies a user ID and optionally, a password.
The DDDL compiler uses this information to determine whether the requested user is
authorized to perform secured operations or access a secured entity type or entity
occurrence.

The PREPARED/REVISED BY clause within an individua entity-type statement
overrides, for that statement only, the default PREPARED/REVISED BY specification,
if present. The default PREPARED/REVISED BY specification is determined by the
user 1D supplied by one of the following, in order of precedence:

1. PREPARED/REVISED BY clause in the SET OPTIONS statement
2. DDDL compiler signon procedure

3. System signon procedure

A PREPARED/REVISED BY clause can appear in any ADD, MODIFY, REPLACE,
DELETE, and DISPLAY/PUNCH statement associated with any entity type.
PREPARED BY can be used when a new comment key definition is added to the
dictionary; REVISED BY can be used when a comment key is changed.

The DDDL compiler reads in the entity-occurrence identification, then performs a
security check. The compiler checks the user specified in the default
PREPARED/REVISED BY clause and in any additional PREPARED/REVISED BY
clauses. If neither of the requested users is authorized, the DDDL compiler rejects the
entire statement. If at least one user is authorized, the DDDL compiler processes the
Statement.

Syntax: PREPARED/REVISED BY clause

A\
A

»—[PREpared by user-id
REVised ——,— L PASsword is password]

Parameters:

3-8 CA-IDMS IDD DDDL Reference

3.3 Securing the dictionary

PREpared by
Supplies a PREPARED BY specification for the named entity occurrence.

REVised by
Supplies a REVISED BY specification for the named entity occurrence.

user-id
Identifies the user requesting the ADD, MODIFY, REPLACE, DELETE,
DISPLAY, or PUNCH operation. User-id must be a 1- through 32-character value
and must be enclosed in quotation marks if it contains embedded blanks or
delimiters. The specified ID must correspond to the ID of a user in the dictionary.
If the requested entity occurrence is secured, the named user must be authorized to
perform the requested operation. The DDDL compiler adds the authority of the
user specified in the PREPARED/REVISED BY clause to the authority of the
signed-on user to validate user-entity authority.

PASsword is password
Specifies the password associated with the named user. Password must be a valid
1- through 8-character password and must be enclosed in quotation marks if it
contains embedded blanks or delimiters. If the named user has not been assigned
a password, this parameter isinvalid. DDDL suppresses the password when it
echoes the command.

Example: In the following statement, user DGS adds the system named
ACCOUNTING to the dictionary; DGS becomes the PREPARED BY specification for
ACCOUNTING, overriding the default PREPARED BY specification established at
signon or in a SET OPTIONS statement.

add system name is accounting
prepared by user dgs.

Usage: Using PREPARED/REVISED BY for security

When you use this clause for security purposes, the PREPARED/REVISED BY clause
must immediately follow the entity-occurrence identification.

SET OPTIONS may impact PREPARED/REVISED BY

If the USER SIGNON OVERRIDE clause of SET OPTIONS is set to OFF (or NOT
ALLOWED), the PREPARED/REVISED BY clause is ignored and a warning message
is displayed.

3.3.2 AUTHORITY clause

The AUTHORITY clause of the USER statement defines a user in the dictionary and
assigns the specified user authority to access secured entity types and perform secured
operations.

Each user definition must include an AUTHORITY clause to grant the named user the
authority to access each entity type, entity group, and product that has been secured by
means of a SET OPTIONS SECURITY IS ON statement. The AUTHORITY clause

Chapter 3. General DDDL Syntax Options 3-9

3.3 Securing the dictionary

also specifies the verbs (ADD, MODIFY, DELETE, REPLACE, DISPLAY, PUNCH)
that the user is authorized to issue; this feature allows the data administrator to grant a
user the authority to modify some entity types yet only display other entity types.

»»> The syntax for the AUTHORITY clause appears with the USER statement (see
4.28, “USER” on page 4-236).

Examples: In the following example, user DDA can use any verb to access any
secured entity type and can perform any secured operation; typically, update authority
is only assigned to the data administrator.

add user name is dda
include authority for update is all.

In the following example, user WMC can modify and display all entity types in the
IDD entity group except USER.
add user name is wmc

include authority for modify is idd
exclude authority for modify is user.

In the following example, user WMC can issue all USER statement clauses that
require ADS, CULPRIT, and OLQ update authority, all verbs for al IDD entity types
(except ADD QFILE and ADD PROCESS), and DISPLAY/PUNCH verbs for all
entity types; however, user WMC cannot issue USER statements that require
PASSWORD update authority.
add user name is wmc

include authority for update is (ads olqg culprit idd)

exclude authority for add is (process qgfile)

include authority for display is all
exclude authority for update is password.

3.3.3 USER clause
The USER clause is vaid in all entity-type statements except CLASS, LOAD
MODULE, MESSAGE, and USER. The USER clause:
® Associates one or more existing users with the requested entity occurrence

® Registers each user to perform operations (MODIFY, REPLACE, DELETE,
DISPLAY/PUNCH) for the requested entity occurrence, or establishes a
registration option of public access.

® Assigns each user responsibility for the creation, update, and/or deletion of the
requested entity occurrence.

Each iteration of the USER clause associates one user with the named entity, specifies
a registration option and one or more responsibilities, and optionally supplies
descriptive text.

Syntax: USER clause

3-10 CA-IDMS IDD DDDL Reference

3.3 Securing the dictionary

T
»—J/—[INClude ::’_ USEr is user-id

EXClude L user-specification]

Expansion of user-specification

>
»p

L REGistered for PUBTic access ¢« 1
ALL ————
UPDate
MOD1i fy
REPTace
DELete
DISPlay

l— NONe ¢« |

RESponsible for j, C
CREation AND CREation
—E UPDate E UPDate 4
DELetion DELetion

L TEXt is user-text J

A
\ 4
A

Parameters

USEr is user-id
Associates (INCLUDE) a user with or disassociates (EXCLUDE) a user from the
reguested entity occurrence. User-id must correspond to a 1- through 32-character
user ID in the dictionary. If the specified ID includes embedded blanks or
delimiters, it must be enclosed in site-standard quote characters.

user-specification
See the following descriptions for the REGISTERED FOR, RESPONSIBLE FOR,
and TEXT parameters.

REGistered for
Registers the named user with the requested entity occurrence and specifies the
functions the user can perform for the entity.

PUBIic access
Specifies that the PUBLIC ACCESS clause (described later in this chapter)
controls the functions that the user can perform. This is the REGISTERED FOR
default.

ALL
Specifies that the user is registered to perform all functions; the user can issue
MODIFY, REPLACE, DELETE, and DISPLAY/PUNCH verbs, and can change
the REGISTERED FOR options for other users and the PUBLIC ACCESS
specification.

UPDate
Specifies that the user is registered to perform update functions; the user can issue
MODIFY, REPLACE, DELETE, and DISPLAY/PUNCH verbs but cannot change
the REGISTERED FOR and PUBLIC ACCESS specifications.

Chapter 3. General DDDL Syntax Options 3-11

3.3 Securing the dictionary

M ODify
Specifies that the user is registered only to issue MODIFY and DISPLAY/PUNCH
verbs.

REPlace
Specifies that the user is registered only to issue REPLACE and
DISPLAY/PUNCH verbs.

DELete
Specifies that the user is registered only to issue DELETE and DISPLAY/PUNCH
verbs.

DISPlay
Specifies that the user is registered only to issue DISPLAY/PUNCH verbs.

RESponsible for
Documents responsibility for the named user. The options named with
RESPONSIBLE FOR do not have any impact on entity-occurrence security.

NONe
Specifies that no responsibility is documented for the named user. NONE is the
default.

CREation
Documents creation responsibility for the named user.

UPDate
Documents update responsibility for the named user.

DELetion
Documents deletion responsibility for the named user.

AND CREation/UPDate/DEL etion
Documents additional creation, update, or deletion responsibilities for the user.
You can repeat this clause.

TEXt is user-text
Associates 1 through 40 characters of documentational text with the user/entity
relationship. If the text includes special characters or embedded blanks, it must be
enclosed in quotation marks. For more information about the TEXT clause, see
3.4, “Documenting entity occurrences’ on page 3-16, later in this chapter.

Examples: The following examples illustrate four forms of the USER clause.

In the following example, user WMC can perform all functions for the CUSTOMER
record (issue MODIFY, REPLACE, DELETE, and DISPLAY verbs, change the
REGISTERED FOR specification for other users, and change the PUBLIC ACCESS
specification); user WMC is also assigned documentational responsibility for creating,
updating, and deleting the record.
add record name is customer

include user wmc

registered for all

responsible for creation
and update and deletion.

3-12 CA-IDMS IDD DDDL Reference

3.3 Securing the dictionary

In the following example, user WMC can modify, replace, delete, and display the
reguested entity occurrence but cannot change the REGISTERED FOR specifications
for other users or the PUBLIC ACCESS specification of the requested entity
occurrence.

include user wmc
registered for update.

In the following example, user WMC can modify and display only the requested entity
occurrence.

include user wmc
registered for modify.

In the following example, user WMC can only display the requested entity occurrence.

include user wmc
registered for display.

Usage: USER clauserules

The following rules apply to the USER clause:

® The clause can be repeated as needed to define multiple users for each entity
occurrence.

® To assign a value other than ALL to the PUBLIC ACCESS clause (that is, to
override the default), at least one user of the entity occurrence must be assigned
the REGISTERED FOR ALL option; see 3.3.4, “PUBLIC ACCESS clause” for
additional details.

= An EXCLUDE request that names the last user assigned the REGISTERED FOR
ALL option will not be processed unless PUBLIC ACCESS IS ALLOWED FOR
ALL has been specified; see 3.3.4, “PUBLIC ACCESS clause” below for further
details.

» The REGISTERED FOR parameter overrides any previously specified registration
options for the named user.

3.3.4 PUBLIC ACCESS clause

PUBLIC ACCESS specifications control entity-occurrence security by identifying the
extent to which unregistered users can access and/or update the requested entity
occurrence. If the PUBLIC ACCESS clause is not specified in an ADD statement, any
user with the proper entity-type authority can update and display the requested entity
occurrence.

Note: The optiona PUBLIC ACCESS clause is valid in al entity-type statements
except CLASS, LOAD MODULE, MESSAGE, and USER.

Syntax: PUBLIC ACCESS clause

Chapter 3. General DDDL Syntax Options 3-13

3.3 Securing the dictionary

»»—— PUBTic access is

for ALL «

L ALLowed il NONE
UPDate
MOD1i fy
REPTace
DELete
DISPlay

A\
A

Parameters:

PUBIic access is ALL Owed for
Supplies the public access specification for the requested entity occurrence.

ALL
Specifies that unregistered users are allowed to issue all verbs and perform all
secured operations. ALL is the default.

NONe
Specifies that unregistered users are not allowed to access the entity occurrence.

UPDate
Specifies that unregistered users are allowed to issue all verbs (MODIFY,
REPLACE, DELETE, and DISPLAY/PUNCH).

M ODify
Specifies that unregistered users are allowed to issue only MODIFY and
DISPLAY/PUNCH verbs.

REPlace
Specifies that unregistered users are allowed to issue only REPLACE and
DISPLAY/PUNCH verbs.

DEL ete
Specifies that unregistered users are allowed to issue only DELETE and
DISPLAY/PUNCH verbs.

DI Splay
Specifies that unregistered users are alowed to issue only DISPLAY/PUNCH
verbs.

Examples: In the following example, any user can modify, replace, delete, and
display the requested entity occurrence and change the REGISTERED specification.

public access is allowed for all.

In the following example, unregistered users cannot update or display the requested
entity occurrence.

public access is allowed for none.

In the following example, unregistered users can modify, replace, delete, and display
only the requested entity occurrence.

public access is allowed for update.

3-14 CA-IDMS IDD DDDL Reference

3.3 Securing the dictionary

Usage: Overriding PUBLIC ACCESS is NONE

When the first user assigned the REGISTERED FOR ALL option is associated with an
entity occurrence, the DDDL compiler automatically sets the PUBLIC ACCESS
specification to NONE in order to prohibit unregistered users from accessing the
entity. To override the PUBLIC ACCESS specification, the data administrator must
submit the PUBLIC ACCESS clause immediately after the REGISTERED FOR ALL
specification. For example:

add record cust-rec

user jmc registered for all
public access is display.

Later, any user who has been registered for all can change the PUBLIC ACCESS
specification.

PUBLIC ACCESS clause with option other than ALL

The DDDL compiler will not process a PUBLIC ACCESS clause that specifies an
option other than ALL unless at least one user associated with the requested entity
occurrence is assigned the REGISTERED FOR ALL option. This feature ensures that
each entity occurrence has at least one user who can change the REGISTERED FOR
specification.

Chapter 3. General DDDL Syntax Options 3-15

3.4 Documenting entity occurrences

3.4 Documenting entity occurrences

The DESCRIPTION, COMMENTS, and TEXT clauses are used to document
entity-occurrence definitions. These clauses are described separately in this section.

3.4.1 DESCRIPTION clause

The DESCRIPTION clause associates up to one line of documentational text with an
entity occurrence. Typically, descriptions clarify entity-occurrence identifications or
briefly explain the expected use of an entity. This clause functions as follows:

® |n an ADD statement, DESCRIPTION establishes a user-specified description for
the entity occurrence.

= |[n a MODIFY or REPLACE statement, DESCRIPTION replaces an existing
description in its entirety, or, if no description exists, establishes the specified
description.

Syntax: DESCRIPTION clause

A\
A

DEScription is description-text

L entity-type-name i

Parameters:

entity-type-name
Identifies the entity type with which the description is being associated. |If
specified, entity-type-name must be a standard IDD entity type.

DEScription is description-text
Assigns 1 through 40 (64, with element occurrences) characters of description text
to the requested entity occurrence. Description-text must be coded on one line
and, if the text contains embedded blanks or delimiters, must be enclosed in
site-standard quote characters. To remove existing description text, specify a null
string ().

Examples: The following examples illustrate the use of the DESCRIPTION clause.

The following clause associates documentational text with the FILE occurrence named
BILLING.

add file billing
description is 'outstanding accounts receivable'.

The following clause nullifies an existing DESCRIPTION clause.

modify system payroll
system description is ''.

3-16 CA-IDMS IDD DDDL Reference

3.4 Documenting entity occurrences

3.4.2 COMMENTS clause

Comments are used to store lengthy descriptions of entities. For each entity type
(except LOAD MODULE), IDD permits an unlimited number of user-supplied
comment entries. The user can associate any number of lines of text with each entry;
no restrictions apply.

Comment text is identified by comment keys: Comment text is identified by
predefined or user-defined comment keys, which can be associated with any entity
occurrence to separately document design, operational, or usage considerations for the
named entity. For example, the user might associate the user-defined comment key
RECOVERY PROCEDURE with a program; text associated with that comment key
contains instructions directed to the operator for use if the program terminates
abnormally.

Predefined comment keys: The DDDL compiler supports the predefined
comment keys shown in the following table.

Comment key Identifies:

COMMENTS Genera comments

DEFINITION A full description of the use or purpose of the entity
occurrence

CULPRIT HEADER An alternative column header for use in CULPRIT

reports. The length and number of these headers are
governed by CULPRIT conventions, as described in the
CA-CULPRIT User Guide. This comment key is valid
only with RECORD statements and RECORD
ELEMENT substatements.

OLQ HEADER An alternative column header for use in OLQ reports.
This comment key is valid only with RECORD
statements and RECORD ELEMENT substatements.

REMARKS Descriptive text for programs. This comment key can
appear in PROGRAM statements only.

User-defined comment keys: You can define additional comment keys.

To define a new comment key, you must issue a MODIFY ENTITY statement to
modify the standard ENTITY definition established during IDD installation. Y ou must
be assigned ATTRIBUTE authority to define comment keys (see 3.3.2, “AUTHORITY
clause” on page 3-9).

Note: Do not use the MODIFY ENTITY statement to add user-defined entities to the
dictionary; the result of such use is unpredictable.

Syntax: MODIFY ENTITY statement (for user-defined comments)

Chapter 3. General DDDL Syntax Options 3-17

3.4 Documenting entity occurrences

v

»»—— MODify ENTIty type name is entity-type-name

< >
<

L[PREpared by user-id |
REVised ——I_ L PASsword is password _

L TEXt is user-text]

[
>—~L—|: INClude <—_-|- USER DEFINED COMMENT is comment-key
EXClude -

Parameters:

ENTIty type name is entity-type-name
Specifies the entity type that is the object of the modification. Entity-type-name
can be any standard IDD entity-type name; however, severa entity types cannot
appear in this clause. A list of the substitute names to be used for these entity

types follows:
Entity type Substitute name
ENTRY POINT PROGRAM
PROCESS MODULE
QFILE MODULE
REPORT RECORD
SCREEN PANEL
SUBSYSTEM SYSTEM
TABLE MODULE
TRANSACTION RECORD
User-defined entity ATTRIBUTE

PREpared/REVised by user-id
Identifies the user requesting the operation. PREPARED BY can be used when a
new comment key definition is added to the dictionary; REVISED BY can be
used when a comment key is changed. If the named user has been assigned a
password, the PASSWORD parameter must be specified. See 3.3, “Securing the
dictionary” on page 3-7 earlier in this chapter for the rules pertaining to the
PREPARED/REVISED BY clause.

PASsword is password
Specifies the password of the user named in the PREPARED/REVISED BY
clause. If password contains embedded blanks or delimiters, it must be enclosed
in site-standard quote characters.

USER DEFINED COMMENT is comment-key
Identifies the comment key to be associated with (INCLUDE) or dissociated from
(EXCLUDE) the requested entity type; INCLUDE is the default. Comment-key
must be a unique 1- through 40-character value. Values that contain embedded
blanks or special characters or that duplicate a keyword from the DDDL syntax

3-18 CA-IDMS IDD DDDL Reference

3.4 Documenting entity occurrences

must be enclosed in site-standard quote characters. Note that a keyword defined
as arelational key (see 3.6, “Associating entity occurrences’ on page 3-33, later
in this chapter) for the requested entity cannot be defined as a comment key for
the same entity. This clause can be repeated to add any number of comment keys.

Note: Use the EXCLUDE option with care. When a comment key is excluded
from an entity type, relationships between occurrences of the entity that
are based on the excluded comment key cannot be deleted, reported on, or
reestablished with the INCLUDE option. First, delete the comment text
from al entity occurrences with which it is associated; then exclude the
comment key.

TEXt is user-text
Associates documentational text with the comment key. Text must be 1 through
40 characters in length and, if it includes delimiters or embedded blanks, must be
enclosed in site-standard quote characters.

Syntax: COMMENTS clause

COMments — is NUL1
DEFinition _[comment-text il

0LQ header
CULprit header —
REMarks

comment-key ——

A\
A

Parameters

COMments/DEFinition/OLQ header /CUL prit header/REM ar ks/comment-key is
Identifies the predefined (COM/DEF/OLQ/CUL/REM) or user-defined
(comment-key) comment key to which the comment text applies. Comment-key
must be a user-defined key previously established in the dictionary through the
MODIFY ENTITY statement. If comment-key includes delimiters or embedded
blanks, or if it duplicates a DDDL keyword, it must be enclosed in site-standard
quote characters. Because the DDDL compiler recognizes comment keys as
keywords, the specified comment key can be abbreviated.

NULI
Removes existing text from the comment key.

comment-text
Specifies the comment text to be associated with the comment key. Comment-text
can consist of multiple input lines. Each line following the first line must begin
with the continuation character (-) followed by the site-standard quote character;
the closing quotation mark is optional. Once defined, comment text can be edited
(see 3.5.3, “EDIT clause” on page 3-25, later in this chapter).

Usage: Associating text with a comment key
After using the MODIFY ENTITY statement to include a comment key for an entity

type, you can use the COMMENTS clause to associate text with a predefined or
user-defined comment key.

Chapter 3. General DDDL Syntax Options 3-19

3.4 Documenting entity occurrences

Include a COMMENTS clause in the applicable entity-type statement. |f a comments
clause appears in a MODIFY or REPLACE statement, the DDDL compiler edits,
replaces, or removes existing comment text.

Disassociating comment text from a comment key

To delete a comment key, remove the comment text associated with a specified entity
(using the NULL parameter of the COMMENTS clause). If the comment is
user-defined, issue the MODIFY ENTITY statement specifying the EXCLUDE USER
DEFINED COMMENT option.

Examples: The following statement establishes the comment key SPECIAL
CONSIDERATIONS for the SYSTEM entity type.

modify entity system
revised by j-user
include user defined comment is 'special considerations'.

The following statement associates the comment text VACATION PAY INCLUDED
IN JUNE 30 CHECKS with the comment key SPECIAL CONSIDERATIONS for the
system PAYROLL.

modify system payroll
'special considerations' is 'vacation pay included'
-"in june 30 checks"'.

The following statement deletes the comment key from the system PAYROLL.

modify system payroll
'special considerations' is null.

The following statement excludes the comment key from the entity type.

modify entity system
revised by j-user
exclude user defined comment is 'special considerations'.

3.4.3 TEXT clause

The TEXT clause associates documentational text with the following:
® User to entity relationships
n Relationa keys
» Relational-key to entity-occurrence structures
» Attribute to entity relationships
® | anguage to module structures
» File-type/VSAM-type/input-modul e/device-typeffile to file relationships
® Module/program/system/user to system relationships
» Entry point/module/program to program relationships

® Record to record relationships

3-20 CA-IDMS IDD DDDL Reference

3.4 Documenting entity occurrences

m User/file to user relationships

Syntax: TEXT clause

\ 4
A

»—— TEXt is user-text

Parameters:

TEXt is user-text

Specifies 1 to 40 characters of documentational text. If user-text includes
embedded blanks or delimiters, it must be enclosed in site-standard quote

characters.

Chapter 3. General DDDL Syntax Options 3-21

3.5 Copying and editing entity occurrences

3.5 Copying and editing entity occurrences

The DDDL compiler syntax includes three clauses that are used to manipulate
entity-occurrence definitions, as shown in the following table. Each of the clausesis
described separately in this section.

Clause What it does

SAME AS Copies the entire definition associated with an existing
entity occurrence into the object entity-occurrence
definition

COPY Copies selected options from an existing entity

occurrence into the object entity-occurrence definition

EDIT Modifies lines in comment text and module source by
performing add, replace, or delete functions, as specified

3.5.1 SAME AS clause

Use the optional SAME AS clause in ELEMENT, FILE, MODULE, QFILE,
PROCESS, PROGRAM, RECORD (REPORT) (TRANSACTION), SYSTEM
(SUBSYSTEM), TABLE, and USER statements to reduce the amount of coding
needed to define multiple entities of the same type.

SAME AS copies options associated with an existing entity occurrence into another
entity occurrence. Except as noted in individual entity-type statements in Chapter 4,
all options are copied.

Syntax: SAME AS clause

\ 4

I
»»—|— SAMe AS entity-type-name entity-occurrence-name

\ 4
A

L Version is —{E version-number |

HIGhest
LOWest
Parameters:
SAMe AS entity-type-name

Specifies the name of the object entity type; valid names are ELEMENT, FILE,
MODULE, PROCESS, QFILE, TABLE, PROGRAM, RECORD, REPORT,
TRANSACTION, SYSTEM, SUBSY STEM, and USER.

entity-occurrence-name
Specifies the name of the entity-occurrence definition to be copied. The specified
name must be the entity's primary name; it cannot be a synonym. DDDL makes

3-22 CA-IDMS IDD DDDL Reference

3.5 Copying and editing entity occurrences

sure that the entity occurrences specified (for the module, dfile, process, and table
entities) are the same entity type.

Verson is version-number/HI Ghest/L OWest

Qualifies nonunique entity-occurrence names for the SAME AS clause.

Usage: Considerations for using SAME AS

The following considerations apply to using the SAME AS clause:

When a definition is copied into an existing entity occurrence, the copied
definition is merged with the existing definition.

You must have authority to access the entity occurrence from which the definition
is to be copied.

When the SAME AS clause is used with an entity type that supports USER
REGISTERED FOR, the compiler copies all registered users from the original
entity occurrence to the named entity occurrence. The compiler also
cross-references the registration in the applicable USER entity occurrence.

VERSION HIGHEST cannot be specified for the entity-occurrence to be copied
if:
— The SAME AS clause references the same entity-occurrence name as the
entity-occurrence being added or modified

and

— A version number, VERSION HIGHEST or NEXT HIGHEST establishes the
entity-occurrence being added or modified as the highest version of the
entity-occurrence

For example, assume you are starting with version 1 of the program PAYROLL.
NEXT HIGHEST in the ADD PROGRAM statement (below) produces a version
2. The following SAME AS clause recalls the newly established version 2
(instead of the intended version 1), causing the error message ATTEMPTED
RECURSIVE CONNECTION.

add program payroll version next highest
same as program payroll version highest.

Example: The following example adds the elements MODEL-DATE,
PROMISE-DATE, and SHIP-DATE to the dictionary, copying the definition of
MODEL-DATE for PROMISE-DATE and SHIP-DATE.

Chapter 3. General DDDL Syntax Options 3-23

3.5 Copying and editing entity occurrences

add element model-date
sub elements are
month
day
year.

add element promise-date
same as element model-date
comments 'items will be shipped before promise date'
-'when possible'.

add element ship-date
same as element model-date.

The DISPLAY statement lists the resulting definition for SHIP-DATE.
display element ship-date prep by j-user.

*+ add

*+ element name is ship-date

*+ date created is 04/05/90
*+ prepared by j-user

*+ subordinate elements are

*+ month version is 1

*+ day version is 1

*+ year version is 1

*+

3.5.2 COPY clause

Use the COPY clause to copy selected options from one entity-occurrence definition to
another and to merge the copied options into the target definition. Options that exist
within both entity definitions are not copied. The COPY clause is valid in any
entity-type statement that supports the SAME AS clause.

Note: To use the COPY clause, the user must have authority to access the entity
occurrence from which the definition is to be copied. The secured entity must
allow the user a minimum of DISPLAY access through either a PUBLIC
ACCESS clause or a REGISTERED clause.

Syntax: COPY clause

»»—— COPy entity-option FROm entity-type-name entity-occurrence-name ——»

HIGhest
LOWest

L Version is —{E version-number ————J

Parameters

COPy entity-option
Specifies the portion of the object entity definition to be copied. For the valid
syntax options for each entity type, see Chapter 4, “Entity-Type Syntax” on
page 4-1.

3-24 CA-IDMS IDD DDDL Reference

3.5 Copying and editing entity occurrences

FROmM entity-type-name
Specifies the name of the source entity type; valid names are ELEMENT, FILE,
MODULE, PROCESS, QFILE, TABLE, PROGRAM, RECORD, REPORT,
TRANSACTION, SYSTEM, SUBSY STEM, or USER.

entity-occurrence-name
Specifies the name of the existing entity occurrence from which the option is to be
copied. DDDL makes sure that the entity occurrences specified (module, dfile,
process, and table) are the same entity type. Source text prevents copying source
text from one entity type to an unrelated entity type.

Version is
Qualifies nonunique entity-occurrence names.

Example: The following example adds programs STCKUPDT and INVCTRL to the
dictionary. All modules associated with STCKUPDT are copied to INVCTRL.
Because modules ONORD, REORD, and NEWORD exist in both programs, those
modules are not copied.

add program stckupdt
module used is onord language is assembler
module used is reord language is assembler
module used is neword Tanguage is assembler
module used is stat Tanguage is assembler
module used is recov language is assembler.

add program invctrl
module used is reord language is assembler
module used is onord language is assembler
module used is neword Tanguage is assembler.

modify program invctrl
copy modules from program stckupdt.

The DISPLAY statement lists the resulting definition for INVCTRL.

display program invctrl.
*+ add
*+ program name is invctrl
*+ date created is 04/05/90
*+ prepared by j-user
*+ module used is onord version is 1 language is assembler
*+ module used is reord version is 1 language is assembler
*+ module used is neword version is 1 language is assembler
*+ module used is stat version is 1 language is assembler
*+ module used is recov version is 1 Tanguage is assembler.

3.5.3 EDIT clause

Use an EDIT clause within entity-type statements to update comment text and the
source statements that comprise modules, processes, and dfiles. The EDIT clause is
intended for use in batch mode or with a dial-up device; in full-screen mode, users can
employ the online text editor described in Chapter 5, “Online DDDL Compiler” on

page 5-1.

Each comment line and source statement has a unique line number by which it can be
referenced during editing. The DDDL compiler automatically generates these

Chapter 3. General DDDL Syntax Options 3-25

3.5 Copying and editing entity occurrences

numbers, incrementing each line by 100 or by the default value defined in the
SEQUENCE clause of the SET OPTIONS statement. Unless overridden in a
SEQUENCE instruction (described in this chapter), the default value is referred to as
the current increment.

Syntax: EDIT clause

»»—|— EDIt COMments -—i— edit-instruction 1L QUIT
DEFinition
comment-key —
0LQ header
CULprit header —
REMarks

MODule SOUrce —

A\
A

Parameters:

EDIt
Specifies the object of the edit operation. EDIT and the object of EDIT (for
example, EDIT COMMENTS) must be coded on a line by itself.

COMments
Specifies that text associated with the predefined comment key COMMENTS is to
be edited.

DEFinition
Specifies that text associated with the predefined comment key DEFINITION is to
be edited.

comment-key
Specifies that text associated with a user-defined comment key is to be edited.
The specified comment key must exist in the dictionary and must either be
abbreviated to one word that does not duplicate a DDDL keyword or be enclosed
in quotation marks if it includes embedded blanks or delimiters or duplicates a
DDDL keyword.

OLQ header
Specifies that text associated with the predefined comment key OLQ HEADER is
to be edited.

CULprit header
Specifies that text associated with the predefined comment key CULPRIT
HEADER is to be edited.

REMarks
Specifies that text associated with the predefined comment key REMARKS is to
be edited.

MODule SOUrce
Specifies that text associated with the named module, process, or dfile source is to
be edited.

3-26 CA-IDMS IDD DDDL Reference

3.5 Copying and editing entity occurrences

edit-instruction
Specifies the edit operation to be performed; valid keywords are INSERT,
REPLACE, ERASE, LIST, SEQUENCE, and SHOW. Multiple edit instructions
can appear between the EDIT and QUIT keywords, however, a single input line
can contain only one edit instruction.

QUIT
Terminates the EDIT clause. This keyword must appear on a separate input line
following the last edit instruction. If QUIT is omitted, the DDDL compiler
attempts to interpret subsequent DDDL source statements as edit instructions and
may incorrectly modify the entity occurrence to which the EDIT statement applies.

Example: The following figure shows an Integrated Data Dictionary Activity List
containing EDIT instructions that insert text in the module IDMS-STATUS.

IDMSDDDL 15.0 COMPUTER ASSOCIATES INTERNATIONAL, INC. DATE TIME PAGE
INTEGRATED DATA DICTIONARY ACTIVITY LIST 1/11/99 12393315 0001
0001 SET OPTIONS INPUT COLUMNS ARE 1 THRU 71.
0002 MODIFY MODULE IDMS-STATUS
0003 EDIT MODULE SOURCE
0004 SHOW ON
0005 SEQUENCE 100
0006 LIST FIRST TO LAST
100)
200) IDMS-STATUS SECTION.
300)
400) IF DB-STATUS-0K GO TO ISABEX.
500) PERFORM IDMS-ABORT.
600) DISPLAY ' !
700) ' ABORTING - ' PROGRAM-NAME
800) ! ERROR-STATUS
900) ! ERROR-RECORD
1000) ! Hxxx RECOVER IDMS wxxx'
1100) UPON CONSOLE.
1200) DISPLAY 'PROGRAM NAME ------ ' PROGRAM-NAME.
1300) DISPLAY 'ERROR STATUS ------ ' ERROR-STATUS.
1400) DISPLAY 'ERROR RECORD ------ ' ERROR-RECORD.
1500) DISPLAY 'ERROR SET ——— ' ERROR-SET.
1600) DISPLAY 'ERROR AREA -------- ' ERROR-AREA.
1700) DISPLAY 'LAST GOOD RECORD -- ' RECORD-NAME.
1800) DISPLAY 'LAST GOOD AREA ---- ' AREA-NAME.
1900) DISPLAY 'DML SEQUENCE-------- ' DML-SEQUENCE.
2000) ROLLBACK.
2100) CALL 'ABORT'.
2200) ISABEX. EXIT.
0007 INSERT 1950
0008 DISPLAY 'DBKEY ' DBKEY.
0009 CEND
THE FOLLOWING WERE INSERTED:
1950) DISPLAY 'DBKEY ' DBKEY.
0010 LIST 1800 TO LAST
1800) DISPLAY 'LAST GOOD AREA ---- ' AREA-NAME.
1900) DISPLAY 'DML SEQUENCE-------- ' DML-SEQUENCE.
1950) DISPLAY 'DBKEY ' DBKEY.
2000) ROLLBACK.
2100) CALL 'ABORT'.
2200) ISABEX. EXIT.
0011 QUIT.

Syntax and parameter descriptions for each of the EDIT instructions follow.

Chapter 3. General DDDL Syntax Options 3-27

3.5 Copying and editing entity occurrences

3.5.4 INSERT instruction of the EDIT clause

INSERT adds one or more text lines before or after existing text or at a specified line
in the existing text. If the SET OPTIONS statement specifies the AFTER IS ON
option or if a SHOW instruction (described under a later instruction heading) precedes
the current INSERT instruction, the results of the insert operation are listed at the
terminal or on the Integrated Data Dictionary Activity List.

Syntax: INSERT instruction

»»—— INSert FIRst
E LASt ———— |— increment BY increment J
line-number —

v

v

»— user-text

\ 4
A

»—— CEND

Parameters:

INSert
Inserts the specified text.

FIRst
Adds the new text before the existing text; the starting line number is equal to the
current increment.

LASt
Adds the new text after the existing text, beginning at the last line number plus
the current increment.

line-number
Adds the first line of new text at the specified unused line number within the
existing text; line-number must be a 1- through 8-digit integer.

increment BY increment
Specifies the starting line number and the interline increment to be applied to new
lines. Increment must be a 1- through 8-digit integer. If used, this clause must
appear on the same input line as the INSERT keyword. For this clause only, the
specified increment value becomes the current line increment value, overriding the
SET OPTIONS SEQUENCE default or the temporary default established by the
SEQUENCE instruction.

The RESEQUENCE option of the SET OPTIONS statement affects INSERT
operations, as follows:

n |f RESEQUENCE IS OFF is specified, al lines must be inserted between two
existing text lines because no resequencing will occur. Therefore,
increment-number must be small enough to accommodate all new lines.

n |f RESEQUENCE IS ON is specified, any number of lines can be inserted in
existing text because resequencing will occur after all edit instructions are
processed.

3-28 CA-IDMS IDD DDDL Reference

3.5 Copying and editing entity occurrences

user-text
Specifies one line of text to be inserted, beginning in column 1. Each additional
line of text must be coded on a separate input line.

CEND
Terminates the INSERT instruction. |If CEND is omitted, the DDDL compiler
issues the END OF FILE BEFORE QUIT message.

3.5.5 ERASE instruction of the EDIT clause

ERASE removes the specified text lines from existing comment text or module source.
If the SET OPTIONS statement specifies the BEFORE IS ON option or if a SHOW
instruction precedes the current ERASE instruction, the DDDL compiler will list the
erased text at the terminal or on the Integrated Data Dictionary Activity List.

Syntax: ERASE instruction

»»—— ERAse FIRst >«
L line-number J |— TO —[LASt
line-number

Parameters:

ERASE
Specifies an erase operation.

FIRst
Erases the first line of existing text or begins the erase operation at the first line of

existing text.

line-number
Specifies an existing text line to be erased or begins the erase operation at the
specified line.

TO LASt
Continues the ERASE function through the last line of existing text.

TO line-number
Continues the ERASE function through the specified line.

3.5.6 REPLACE instruction of the EDIT clause

REPLACE removes the specified text lines from existing comment text or module
source and adds new text beginning at the line vacated by the first removed line. If
the SET OPTIONS statement specifies the AFTER IS ON or BEFORE IS ON option
or if a SHOW ON instruction precedes the current REPLACE instruction, the DDDL
compiler will list the results of the REPLACE operation (both the text removed and
the existing text with additions) at the terminal or on the Integrated Data Dictionary
Activity List.

Syntax: REPLACE instruction

Chapter 3. General DDDL Syntax Options 3-29

3.5 Copying and editing entity occurrences

v

»»—— REPTace _E FIRst
line-number JL T0 —[LASt ﬁ—‘
line-number

»
>

v

L— increment BY increment ——J

v

»—— user-text

»—— CEND

v
A

Parameters

REPlace
Specifies a REPLACE operation.

FIRst
Removes the first line of existing text or begins the removal at the first line within
the specified range of lines. The new text is added in place of the first deleted
line.

line-number
Removes the specified line of existing text or begins the removal at the first text
line within the specified range of lines. The first line of new text is added at the
specified location.

TO LASt
Continues the removal and replacement of existing text through the last existing
line.

TO line-number
Continues the removal and replacement of existing text through the specified line.

increment BY increment
Specifies the starting line number for the REPLACE FIRST instruction and the
interline increment to be applied to replaced lines. Increment must be a 1-
through 8-digit integer. If used, this optional clause must appear on the same
input line as the REPLACE keyword. For this clause only, increment becomes
the current line-increment value, overriding the SET OPTIONS SEQUENCE
default or the temporary default established by the SEQUENCE instruction.

The RESEQUENCE option of the SET OPTIONS statement affects REPLACE
operations as follows:

n |f RESEQUENCE IS OFF is specified, al lines must be inserted between two
existing text lines because no resequencing will occur. Therefore,
increment-number must be small enough to accommodate al required
replacement lines.

n |f RESEQUENCE IS ON is specified, any number of replacement lines can
be inserted in existing text because resequencing will occur after all edit
instructions are processed.

user-text
Specifies one line of text to be inserted, beginning in column 1. Each additional
line of text must be coded on a separate input line.

3-30 CA-IDMS IDD DDDL Reference

3.5 Copying and editing entity occurrences

CEND
Terminates the REPLACE instruction. |If CEND is omitted, the DDDL compiler
will issue the END OF FILE BEFORE QUIT message.

3.5.7 LIST instruction of the EDIT clause

LIST reguests the DDDL compiler to list the specified line or range of lines from
existing comment text or module source at the terminal or on the Integrated Data
Dictionary Activity List.

Syntax: LIST instruction

»— LISt > <

FIRst —_l— T0 LASt
line-number _E line-number

Parameters

LISt
Lists all lines of existing text.

LISt FIRst
Lists the first line of text or initiates the LIST function at the first line of existing
text.

LISt line-number
Lists the specified line of text or initiates the LIST function at the specified line or
first existing line after the specified line.

TO LASt
Continues the LIST function through the last line of text.

TO line-number
Continues the LIST function through the line identified by line-number or the last
existing line in the specified range. The ending line number must be greater than
the beginning line number.

3.5.8 SEQUENCE instruction of the EDIT clause
SEQUENCE is used to resequence comment text or module source.

Syntax: SEQUENCE instruction

A\
A

»»—— SEQuence |_

sequence-number J

Parameters:

SEQuence
Requests that the DDDL compiler resequence existing text by using the default
line increment value specified in the SET OPTIONS statement SEQUENCE
clause.

Chapter 3. General DDDL Syntax Options 3-31

3.5 Copying and editing entity occurrences

seguence-number
Specifies the sequence number that SEQUENCE is to use as the starting line
number, the interline increment, and the current increment for all subsequent
INSERT and REPLACE instructions of the current EDIT clause.

3.5.9 SHOW instruction of the EDIT clause

SHOW requests or suppresses the listing of the results of subsequent INSERT,
ERASE, or REPLACE instructions at the terminal or on the Integrated Data Dictionary
Activity List. SHOW overrides SET OPTIONS statement BEFORE and AFTER
clause specifications and remains in effect for all INSERT, ERASE, and REPLACE
instructions until the DDDL compiler encounters another SHOW instruction or until
the EDIT clause is terminated.

Syntax: SHOW instruction

»»—— SHOw ON
OFF
BEFore —
AFTer —

Parameters:

SHOw
Specifies a SHOW operation.

ON
Selects both the AFTER IS ON and BEFORE IS ON defaults for the INSERT,
ERASE, and REPLACE instructions in the current EDIT clause.

OFF
Selects both the AFTER IS OFF and BEFORE IS OFF defaults for the INSERT,
ERASE, and REPLACE instructions in the current EDIT clause.

A\
A

BEFore
Selects only the BEFORE IS ON default for the ERASE and REPLACE
instructions in the current EDIT clause.

AFTer
Selects only the AFTER 1S ON default for the INSERT and REPLACE
instructions in the current EDIT clause.

3-32 CA-IDMS IDD DDDL Reference

3.6 Associating entity occurrences

3.6 Associating entity occurrences

IDD supports relationships between entity occurrences to enable the dictionary to
correctly represent relational facts about the data resource. An example of such a
relationship is the association between a user and a system.

Standard relationships: The DDDL compiler establishes standard
entity-occurrence relationships through the clauses shown in the following table.

»» For information on these clauses, see Chapter 4, “Entity-Type Syntax” on

page 4-1.

Clause

What it does

USER

Defines the relationship between an entity occurrence and its
users. This clause is valid in al entity types except CLASS,
LOAD MODULE, MESSAGE, and USER and is described
under 3.3, “Securing the dictionary” on page 3-7, earlier in
this chapter.

WITHIN SYSTEM

Defines the relationship between a destination, line, logical
terminal, map, module, physical terminal, process, program,
gfile, queue, table, or task and a system or subsystem. Syntax
for the WITHIN SYSTEM clause appears in the individual
entity-type syntax in Chapter 4.

Nesting clauses

Expresses hierarchical relationships between two users,
systems, files, elements, or programs.

Standard nesting clauses: The standard nesting clauses are as follows:

Entity type

Clause

ELEMENT

SUBORDINATE ELEMENT

FILE

RELATED FILE

PROGRAM

PROGRAM CALLED

SYSTEM

WITHIN SYSTEM

USER

WITHIN USER

These clauses are described in detail within the applicable entity-type statement in

Chapter 4.

User-defined relationships: The DDDL compiler also supports user-defined
entity-occurrence relationships through the following:

» User-defined nests

Chapter 3. General DDDL Syntax Options 3-33

3.6 Associating entity occurrences

Express relationships between entities of the same type in terms that are
meaningful within the user environment. DD supports user-defined nests through
relational keys.

» Class/attribute structures

Relate documentational characteristics known as attributes to entity occurrences.

Relational keys and attribute/entity relationships are discussed separately in this
section.

3.6.1 Relational keys

Relational keys are user-defined keywords that relate entities of the same type. The
user can associate any number of relational keys with occurrences of the
ATTRIBUTE, ELEMENT, FILE, MODULE, PROGRAM, RECORD, SYSTEM,
USER, and user-defined entity types by including a relational-key clause within the
applicable entity-type statement. Relational-key clauses are functionally similar to
standard DDDL nesting clauses; however, the use of a relational key allows the user to
express the relationship in more precise terms.

Defining relational keys: To define arélational key, the user must issue a
MODIFY ENTITY statement to modify the standard ENTITY definition established
during IDD installation.

Note: Do not use the MODIFY ENTITY statement to add user-defined entities to the
dictionary; the result of such use is unpredictable.

Syntax: MODIFY ENTITY statement (for user-defined nests)
»»—— MODify ENTIty type name is entity-type-name

v

| "

|—[PREpared by user-id
REVised ——I— |— PASsword is password J

I
— INClude <« USER DEFINED NEST is relational-key >
—[EXClude ——,—

> |
>

|: TEXt is user-text
INVerse key is inverse-relational-key —

A\
A

Parameters

ENTIty type name is entity-type-name
Specifies the entity type that is the object of the modification. Entity-type-name
can be any standard IDD entity-type name; however, severa entity types cannot
appear in this clause. A list of the substitute names to be used for these entity
types follows:

3-34 CA-IDMS IDD DDDL Reference

3.6 Associating entity occurrences

Entity type Substitute name
ENTRY POINT PROGRAM
PROCESS MODULE
QFILE MODULE
REPORT RECORD
SCREEN PANEL
SUBSYSTEM SYSTEM
TABLE MODULE
TRANSACTION RECORD
User-defined entity ATTRIBUTE

PREpared/REVised by user-id
Identifies the user requesting the operation. The PREPARED BY clause can be
used when a new comment key definition is added to the dictionary; REVISED
BY can be used when a comment key is changed. For the rules pertaining to the
PREPARED/REVISED BY clause, refer to 3.3, “ Securing the dictionary” on
page 3-7, earlier in this chapter.

PASsword is password

Specifies the password of the user named in the PREPARED BY/REVISED BY
clause. If the named user has been assigned a password, this parameter must be

specified.

USER DEFINED NEST is relational-key

Identifies the relational key to be associated with (INCLUDE) or dissociated from
(EXCLUDE) the abject entity type; INCLUDE is the default. Relational-key must
be a unique 1- through 40-character value. Values that contain embedded blanks
or delimiters, or that duplicate a keyword from the DDDL syntax must be
enclosed in site-standard quote characters. The same relational key can be defined
for multiple entity types, however, a keyword defined as a comment key for the
object entity cannot be defined as a relational key for the same entity (see 3.4.2,
“COMMENTS clause” on page 3-17, earlier in this chapter). This parameter can
be repeated to add any number of relational keys.

Note: Use the EXCLUDE option with care. If arelational key is excluded from
an entity type, relationships between occurrences of that entity that are
based on the excluded relational key cannot be deleted, reported on, or
reestablished with the INCLUDE option. First, delete the relationship
from al entity occurrences; then exclude it from the ENTITY definition.

TEXt is user-text

Associates documentational text with the relational key. User-text must be 1
through 40 characters in length and, if it includes delimiters or embedded blanks,
must be enclosed in site-standard quote characters.

Chapter 3. General DDDL Syntax Options 3-35

3.6 Associating entity occurrences

INVerse key is inverse-relational-key

Associates a second relational key with the primary relational key.
Inverse-relational-key is a unique 1- through 40-character value. Values that
contain embedded blanks or delimiters or that duplicate a keyword from the
DDDL syntax must be enclosed in site-standard quote characters.

When two entity occurrences are associated with the primary relational key, the
DDDL compiler automatically maintains the logical connections implied by the
secondary (inverse) key as well as those associated with the primary key. The
DDDL compiler also maintains primary and secondary connections when two
entity occurrences are associated with an inverse relational key. The user can
modify the inverse relational key without affecting all occurrences of the primary
relational key.

Example: The following 3-step example illustrates the use of relational keys and
inverse relational keys.

1. The following statement defines a relational key for the USER entity type with an

Using relational-key clauses:

inverse relationa key.

modify entity user
revised by j-user
include user defined nest is 'manages'
inverse key is 'works for'.

. Three USER definitions are added to the dictionary. JOE is added without the use
of relational keys. BOB is added to the dictionary, and his relationship with ANN
is documented using the inverse relational key. ANN is added to the dictionary,
and her relationship with JOE is documented using the primary relational key.

add user joe.
add user ann
'manages' joe.
add user bob
'works for' ann.

. The resulting definitions are displayed.

display user joe.

*+ add

*+ user name is joe

*+ 'works for' is ann
*+
user
*+
*+
*+
*+
user
*+
*+
*+
*+
*+

bob.

add

user name is bob
'works for' is ann

display

display ann.

add

user name is ann
'manages' is joe
'manages' is bob

The user can include a relational-key clause within

the applicable entity-type statement to associate an entity occurrence with an
occurrence of the same entity type. The relational-key clause can be repeated using
the same or different relational keys to associate the entity occurrence with additional
occurrences of the same entity type. The DDDL compiler rejects any relational-key
clauses that attempt to duplicate existing relationships.

3-36 CA-IDMS IDD DDDL Reference

3.6 Associating entity occurrences

Syntax: RELATIONAL-KEY clause

A\

I
»—|— relational-key is entity-occurrence-name

HIGhest

L— Version is —{E version-number ———J L— TEXT is user-text ——J
LOWest

Parameters:

relational-key is
Names an existing relational key. The specified value must be enclosed in
site-standard quote characters if it contains embedded blanks or delimiters, or if it
duplicates a DDDL compiler keyword. Because the DDDL compiler recognizes
relational keys as keywords, the specified relational key can be abbreviated.

entity-occurrence-name
Names the entity occurrence to which the object entity occurrence is being related.
If entity-occurrence-name is qualified by multiple versions, the optional VERSION
clause must be specified.

Note: The user can supply a LANGUAGE parameter to uniquely identify
occurrences of the MODULE entity type in relational-key clauses (see
4.16, “MODULE (PROCESS/QFILE/TABLE)” on page 4-92).

Version is version-number/HI Ghest/L OWest
Qualifies nonunigue entity-occurrence names for the relational-key clause.

TEXt is user-text
Associates 1 through 40 characters of documentational text with the nested
structure being defined. If the text contains embedded blanks or delimiters, it
must be enclosed in site-standard quote characters.

Examples: The following statement associates the previously-defined file
WEEKLY -SALES with the new file, INVOICES, by means of the relational key
SIMILAR FILE.
add file invoices

'similar file' is weekly-sales.

The following statements establish a relationship between users. Both departments and
individuals are documented as users.

modify entity type name is user
user defined nest is department-number.

add user name is 122.

add user name is wmc
department-number is 122.

Chapter 3. General DDDL Syntax Options 3-37

3.6 Associating entity occurrences

3.6.2 Attribute/entity relationships
Attributes are characteristics that can be assigned to entities.
Classes are categories of attributes.

For example, the attributes COBOL, Assembler, and PL/I are assignable to programs
and are grouped into a class called LANGUAGE.

»» For information on the rules for defining attributes and classes, see 4.3,
“ATTRIBUTE” on page 4-6 and 4.4, “CLASS’ on page 4-13.

A class must exist in the dictionary: A class must exist in the dictionary in
order for attributes within that class to be related to entity occurrences. Each class
definition contains qualifiers that determine how attributes within the class are added
to the dictionary and govern how many attributes can be related to each entity
occurrence. These qualifiers are described in the following table.

Qualifiers for attributes:

3-38 CA-IDMS IDD DDDL Reference

3.6 Associating entity occurrences

To do this

Use these qualifiers

Specify how attributes are
added to the dictionary

Manual

Attributes within classes assigned the manual qualifier
must be defined in the dictionary explicitly with ADD
ATTRIBUTE statements before being associated with an
entity occurrence. Typically, the manual qualifier
applies to classes having a limited number of attributes
that can be easily predefined. For example, the class
SEX has only two attributes, MALE and FEMALE.
These attributes must exist in the dictionary before they
can be related to occurrences of the USER entity.

Automatic

Attributes within classes assigned the automatic qualifier
are added to the dictionary automaticaly. The
automatic qualifier applies to classes having an
unlimited number of attributes that would be difficult to
predefine. For example, the class BIRTH DATE has
unlimited attributes. These attributes are added to the
dictionary automatically when they are related to
occurrences of the USER entity.

Specify how many
attributes can be related
to each entity occurrence

Singular

Only one attribute can be related to each entity
occurrence. For example, if attributes within the class
LANGUAGE are to be related to programs,
LANGUAGE should be assigned the singular qualifier
because only one language (for example, COBOL) is
valid for a single program.

Plural

An unlimited number of attributes can be related to each
entity occurrence. For example, if attributes within the
class LANGUAGE are to be related to users,
LANGUAGE should be assigned the plura qualifier
because a user could be proficient in several languages.

Standard classes - LANGUAGE and MODE: The Integrated Data Dictionary
automatically creates two standard classes; these classes and their qualifiers are as

follows:

. LANGUAGE class — Qualifiers are MANUAL PLURAL.
. MODE class — Qualifiers are AUTOMATIC PLURAL.

The IDD installation procedure assigns attributes to the LANGUAGE class (for
example, OLQ, CULPRIT, COBOL).

Chapter 3. General DDDL Syntax Options 3-39

3.6 Associating entity occurrences

Class/attribute clause: The repeatable class/attribute clause, valid in all
entity-type statements, is used to establish attribute/entity relationships.

Syntax: Clasg/attribute clause

MODE |— TEXt is user-text J

class-name —

I
»—J/—E LANGUAGE —— is attribute-name

Parameters:

LANGUAGE/MODE/class-name is
Specifies the class in which the named attribute participates. Specify
LANGUAGE or MODE to relate an attribute within the predefined class
LANGUAGE or MODE to the requested entity occurrence. Specify class-name to
relate an attribute within a user-defined class to the requested entity occurrence.
The name must be 1 through 20 characters in length, must reference a class that
has been defined in the dictionary with an ADD CLASS statement, and must be
coded on one input line. Class-name cannot be abbreviated.

Note: The specification of LANGUAGE or MODE affects the processing of
other CA-IDMS data-management components and should be used with
care.

attribute-name
Specifies the attribute to be related to the named entity. The named attribute must
exist in the dictionary if the named class is assigned the manua qualifier. If
attribute-name includes embedded blanks or delimiters, it must be enclosed in
site-standard quote characters. The specified attribute name must be unique within
the named class but need not be unique within the dictionary.

TEXt is user-text
Associates 1 through 40 characters of documentational text with this
attribute/entity relationship. If the text includes embedded blanks or delimiters, it
must be enclosed in site-standard quote characters.

Examples: Assuming that class DATE-OF-HIRE has been defined with the
automatic qualifier, the following statement adds user JCD and attribute 2/25/87 to the
dictionary and relates this attribute to both user JCD and class DATE-OF-HIRE.

add user jcd
date-of-hire is 2/25/87.

Using the predefined class LANGUAGE, the following statement associates the
predefined attribute COBOL with the program BILLING.

modify program billing
language is cobol.

3-40 CA-IDMS IDD DDDL Reference

3.7 Displaying entity occurrences

3.7 Displaying entity occurrences

You can list one or more entity-occurrence definitions by using the DISPLAY/PUNCH
statement, which functions as follows:

m DISPLAY — Lists all or selected portions of the requested entity occurrences at
the terminal or on the Integrated Data Dictionary Activity List. During an online
session, the user can edit DISPLAY verb output and resubmit it as input to the
DDDL compiler.

® PUNCH — When used online, functions in the same way as DISPLAY. When
used in batch mode, writes the requested information to the SY SPCH file or to an
IDD module defined as the destination for PUNCH verb output.

Optional DISPLAY/PUNCH statement clauses allow the user to specify, for the
current DISPLAY/PUNCH statement only, the entity-type options to be listed, whether
these options are to appear as syntax or comments, the verb to accompany the
DISPLAY/PUNCH output, and, for PUNCH only, the destination for the punched
output. If the DISPLAY/PUNCH statement requests multiple occurrences of an entity
type, the user can supply a conditional expression that specifies criteria to be used by
the DDDL compiler in selecting the requested entities.

Two output formats: The format of DISPLAY/PUNCH verb output is governed by
the SET OPTIONS statement FORMAT |S FIXED/FREE specification. A FREE
format appears as running text, for example:

display next map.

*+ display map name is linda version is 1

*+ within panel linda-olmpanel version is 1

display prior program.

*+ display program name is chs02 version is 1 .

A FIXED format appears in a columnar presentation, for example:
display first 2 maps.

*+ display

*+ map name mkmap?2

*+ version 0000000001

*+ within panel mkmap2-oTmpanel
*+ version 0000000001

*+ .

*+ display

*+ map name mkmapl

*+ version 0000000001

*+ within panel mkmapl-olmpanel

*+ version 0000000001
*+ .

Columnar format facilitates access to DDDL compiler output by online CA-IDMS
applications.
Requesting single or multiple occurrences: There are two DISPLAY/PUNCH

statements:

» DISPLAY/PUNCH for regquesting a single entity occurrence

Chapter 3. General DDDL Syntax Options 3-41

3.7 Displaying entity occurrences

n DISPLAY/PUNCH ALL for requesting multiple occurrences

The syntax for each statement is presented separately in the following two subsections.

Note that parameter descriptions that apply to both DISPLAY/PUNCH and
DISPLAY/PUNCH dl appear following the DISPLAY/PUNCH syntax.

3.7.1 DISPLAY/PUNCH statement

The DISPLAY/PUNCH statement allows you to display or punch options for a single
entity occurrence.

Syntax: DISPLAY/PUNCH (for a single entity occurrence)

>>—T: DISplay entity-type-name name is entity-occurrence-name ——»
PUNch)

A

HIGhest
LOWest

L— Version is —{E version-number ——J

A
v

L PREpared by user-id T H |
PASsword is password

WITh entity-option ——J
ALSo WITh E]
WITHOut

A
v

A
A\

L TO _I: SYSpch

MODuTe module-name

HIGhest
LOWest

L— Version is —{E version-number ———J

\ 4
v

| LANguage is language 11 PREpared by user-id [N
PASsword is password

A

L VERB DISplay L AS T SYNtax ——:]—J
PUNch COMments
ADD
MOD1i fy
REPTace
DELete

Parameters

DI Splay/PUNch entity-type-name
Specifies that the DDDL compiler is to display or punch the information
associated with a single entity-occurrence definition. Entity-type-name must be a
valid IDD entity type.

A

3-42 CA-IDMS IDD DDDL Reference

3.7 Displaying entity occurrences

name is entity-occurrence-name
Specifies an existing occurrence of the specified entity type.

Version is version-number/Hl Ghest/L OWest
Qualifies nonunique entity names.

PREpared by user-id
Identifies the user requesting the DISPLAY operation. User-id must be a 1-
through 32-character value and must be enclosed in quotation marks if it contains
embedded blanks or delimiters.

PASsword is password
Specifies the password associated with the user named in the PREPARED BY
parameter.

WITh entity-option
Specifies that the DDDL compiler is to replace the options specified in the SET
OPTIONS DISPLAY WITH and DISPLAY ALSO WITH statements with the
specified options for this DISPLAY/PUNCH reguest only.

ALSo WITh
Specifies that the DDDL compiler is to add the specified options to the default
options specified in the SET OPTIONS DISPLAY WITH and DISPLAY ALSO
WITH statements for this DISPLAY/PUNCH request only.

WITHOut
Specifies that the DDDL compiler is to exclude the specified options from the
default options specified in the SET OPTIONS DISPLAY WITH and DISPLAY
ALSO statements for this DISPLAY/PUNCH request only.

entity-option
Specifies an entity-specific option that is the object of the WITH/ALSO
WITH/WITHOUT specification. All entity-options you can specify are described
in detail under the DISPLAY clause of the SET OPTIONS statement (see 2.4.2,
“SET OPTIONS syntax” on page 2-9). Individual syntax diagrams in Chapter 4
list the valid options for each entity type.

TO
Specifies the destination for punched output (used with PUNCH only).

SY Spch
Specifies that the DDDL compiler is to direct PUNCH verb output to the
SY SPCH file.

M ODule module-name
Specifies that the DDDL compiler is to direct PUNCH verb output to the named
module. Module-name must be the 1- through 32-character name of a module
defined in the dictionary through the MODULE statement (see 4.16, “MODULE
(PROCESS/QFILE/TABLE)” on page 4-92). The following rules apply to the
named module:

= Once the module has been named as the destination of the PUNCH command,
it cannot be modified, replaced, or deleted.

= A module cannot be punched to itself.

Chapter 3. General DDDL Syntax Options 3-43

3.7 Displaying entity occurrences

. The PUNCH verb cannot name a module that is the object of an INCLUDE
statement.

If module source is aready associated with the object module, the DDDL
compiler adds the PUNCH verb output to the end of the existing module. If
module source does not exist, the DDDL compiler generates a header which
contains the date and time that the initial punched output was created.

The specified destination overrides the default destination established in the SET
OPTIONS PUNCH statement.

Version is version-number/HIGhest/L OWest
Qualifies the named module with a version number.

L ANguage is language
Qualifies the named module with a language.

VERB DI Splay/PUNch/ADD/M ODify/REPlace/DEL ete
Specifies the verb that is to accompany DISPLAY/PUNCH output. This
parameter overrides the default verb established in the SET OPTIONS VERB
statement.

AS SYNtax
Specifies that the text output by the DISPLAY/PUNCH verb is to appear as
syntax. In an online session, text displayed as syntax can be edited and
resubmitted to the DDDL compiler. If the PUNCH command is issued in batch
mode, the DDDL compiler directs the output to the SY SPCH file or to an IDD
module, where it can be edited and subseguently resubmitted.

This parameter overrides the default format established in the SET OPTIONS
statement.

AS COMments
Specifies that the text output by the DISPLAY/PUNCH verb be formatted as
compiler comments; comments are preceded by *+ and are ignored by the DDDL
compiler. This parameter overrides the default format established in the SET
OPTIONS statement.

3.7.2 DISPLAY/PUNCH ALL statement

The DISPLAY/PUNCH ALL statement allows you to display or punch options for
multiple entity occurrences.

Note: The parameter descriptions that apply to both the DISPLAY/PUNCH and the
DISPLAY/PUNCH ALL statements appear after the DISPLAY/PUNCH
syntax.

Syntax: DISPLAY/PUNCH ALL (for multiple entity occurrences)

3-44 CA-IDMS IDD DDDL Reference

3.7 Displaying entity occurrences

entity-type-name ——»

>>—I: DISp]a ALL
PUNch FIRst
NEXt :Ej L— nt1t -count —J

LASt
PRIor

< >
<

L PREpared by user-id L_] |
PASsword is password

< >
<

L WHEre conditional-expression —J

(for complete conditional-expression syntax, see WHERE clause later
in this chapter)

\4

L— BY _I: SET
AREa
L TO T SYSpch
MODuTe module-name B]
Version is version-number —
_{E HIGhest
LOWest

\ 4
v

[

| LANguage is language I PREpared by user-id []
PASsword is password

L VERB DISplay L AS —I: SYNtax ——:]—J
PUNch COMments
ADD
MODi fy
REPTace
DELete

A

Parameters: Parameters specific to DISPLAY/PUNCH ALL

DI Splay/PUNch ALL/FIRst/NEXt/LASt/PRIOr
Specifies that the the DDDL compiler is to display or punch multiple entity
occurrences. The output consists only of the information necessary to execute a
DISPLAY/PUNCH entity request for each entity occurrence. For example,
RECORD occurrences are displayed with their name and version, MODULE
occurrences with their name and language, and ATTRIBUTE occurrences with
their name and class. In an online session, the user can execute the displayed
statements by pressing ENTER. This two-step process allows the user to scan the
contents of the dictionary for the desired entity-occurrence definitions without
generating unneeded output.

ALL
Lists all occurrences of the requested entity type that the current user is authorized
to display. With alarge number of entity occurrences, ALL may slow online
response time. You can use the DISPLAY ALL LIMIT and INTERRUPT

Chapter 3. General DDDL Syntax Options 3-45

3.7 Displaying entity occurrences

COUNT clauses of the SET OPTIONS statement (see 2.4, “SET OPTIONS
statement” on page 2-8) to limit DISPLAY.

FIRst/NEXt/L ASt/PRIOr
Lists the first, next, last, or prior occurrences of the named entity type.

entity-count
Specifies the number of occurrences displayed or punched. 1 is the default.

entity-type-name
Identifies the entity type or entity synonym that is the object of the
DISPLAY/PUNCH ALL request.

WHETr e conditional-expression
Specifies criteria to be used by the DDDL compiler in selecting occurrences of the
requested entity type. Conditional-expression is described in detail under 3.7.3,
“WHERE clause (conditional expressions),” later in this chapter.

BY SET
Retrieves all entity occurrences by the set relationship between the OOAK-012
record and the entity record. BY SET is most efficient when the dictionary
contains relatively fewer occurrences than there are pages in the dictionary. BY
SET can be applied to any entity type except MESSAGE or LOAD MODULE.
SET is the default for al entity types except ELEMENT and ELEMENT
SYNONYM.

BY AREa
Retrieves all entity occurrences by sweeping the DDLDML area of the dictionary.
BY AREA is most efficient when the dictionary contains relatively numerous
occurrences of the requested entity-type, generally more occurrences than there are
pages in the dictionary. BY AREA can be applied to any entity type except
MESSAGE or LOAD MODULE. AREA is the default for the ELEMENT and
ELEMENT SYNONYM entity types.

3.7.3 WHERE clause (conditional expressions)

The WHERE clause of a DISPLAY/PUNCH ALL statement defines a condition. The
outcome of atest for the condition determines which occurrences of the named entity
type the DDDL compiler selects for display.

The WHERE clause can contain a single condition, or two or more conditions
combined with the logical operators AND or OR. The logical operator NOT specifies
the opposite of the condition. The DDDL compiler evaluates operators in a WHERE
clause one at atime, from left to right, in order of precedence. The default order of
precedence is as follows:

. MATCHES or CONTAINS keywords
. EQ, NE, GT, LT, GE, LE operators
= NOT

= AND

= OR

3-46 CA-IDMS IDD DDDL Reference

3.7 Displaying entity occurrences

If parentheses are used to override the default order of precedence, the DDDL
compiler evaluates the expression within the innermost parentheses first.

Syntax: WHERE clause (for conditional expressions)

A\
A

»—— WHEre conditional-expression

Expansion of conditional-expression

v

»»—— mask-comparison
— value-comparison

() —
L NOT ——| l: mask-comparison ﬂ

value-comparison

|
| AND mask-comparison
L OR L value-comparison

T T (mask-comparison e) -
NOT L value-comparison
Expansion of value-comparison

»»—— entity-option

— numeric-literal —————
'— 'character-string-literal' —

v

<« IS entity-option >«
L NOT i |: numeric-literal —————
— NE 'character-string-literal' —
EQ
NOT =
GT
.
LT
<
GE
LE

Expansion of mask-comparison

»— entity-option _E CONTAINS_—,— 'mask-value'
MATCHES

\4
A

Parameters

NOT
Specifies that the opposite of the condition fulfills the test requirements; if NOT is
specified, the condition must be enclosed in parentheses.

AND
Specifies a logical operator to accompany multiple conditions. The expression is
true only if the outcome of both test conditions is true.

OR
Specifies a logical operator to accompany multiple conditions. The expression is
true if the outcome of either one or both test conditions is true.

value-comparison
Compares values represented in the left and right-side operands based on the
specified comparison operator.

Chapter 3. General DDDL Syntax Options 3-47

3.7 Displaying entity occurrences

entity-option
Identifies a syntax option associated with the named entity type; valid options for
each entity type are listed in the table following these parameter descriptions.

numeric literal
Identifies a numeric value.

‘character-string-literal’
Identifies a character string enclosed in quotes.

IS'NOT
Specifies whether the |eft operand is equal (1S) or is not equal (IS NOT) to the
right operand.

NE
Specifies whether the |eft operand is not equal to the right operand.

EQ/GT/LT/GE/LE
Specifies whether the left operand is equal to, greater than, less than, greater than
or equal to, or less than or equal to the right operand. Each operator can be
preceded by NOT to specify the opposite of the condition.

mask-comparison
Compares an entity type operand with a mask value.

CONTAINS
Searches the left operand for an occurrence of the right operand. The length of
the right operand must be less than or equa to the length of the left operand. If
the right operand is not contained entirely in the left operand, the outcome of the
condition is false.

MATCHES
Compares the left operand with the right operand one character at a time,
beginning with the leftmost character in each operand. When a character in the
left operand does not match a character in the right operand, the outcome of the
condition is false.

'mask-value'
Identifies the right operand as a character string; the specified value must be
enclosed in quotation marks. The following characters can be specified in
mask-value:

@ matches any alphabetic character in entity-option
matches any numeric character in entity-option

* matches any character in entity-option

Valid entity options for the WHERE clause:

3-48 CA-IDMS IDD DDDL Reference

3.7 Displaying entity occurrences

Entity type Option
ATTRIBUTE Entity-type NAME
PREPARED BY
REVISED BY
DATE LAST UPDATED
DATE CREATED
CLASS NAME
CLASS Entity-type NAME
ENTRY POINT PREPARED BY
MESSAGE REVISED BY
DATE LAST UPDATED
DATE CREATED
DESTINATION Entity-type NAME
ELEMENT VERSION
FILE PREPARED BY
LINE REVISED BY

LOGICAL-TERMINAL
MAP

MODULE

PANEL
PHYSICAL-TERMINAL
PROCESS

QFILE

QUEUE
RECORD/REPORT/TRANS-
ACTION
SYSTEM/SUBSYSTEM
TABLE

TASK

USER

DATE LAST UPDATED

DATE CREATED

DESCRIPTION

FULL NAME (USERS only)
LANGUAGE (MODULEs only)
LINE NAME
(PHYSICAL-TERMINALS only)
LINE TYPE (LINEs only)
PANEL NAME (MAPs only)
PHYSICAL-TERMINAL NAME
(LOGICAL-TERMINALs only)

ELEMENT SYNONYM
FILE SYNONYM

SYNONYM NAME

SYNONYM VERSION (FILEs only)
ELEMENT or FILE NAME
VERSION

PREPARED BY

REVISED BY

DATE LAST UPDATED

DATE CREATED

DESCRIPTION

LOAD MODULE

LOAD MODULE NAME
VERSION
DATE COMPILED

PROGRAM

PROGRAM NAME
VERSION

PREPARED BY
REVISED BY

DATE LAST UPDATED
DATE CREATED
DESCRIPTION

DATE COMPILED

Chapter 3. General DDDL Syntax Options 3-49

3.7 Displaying entity occurrences

Entity type

Option

RECORD SYNONYM
REPORT SYNONYM
TRANSACTION SYNONYM

SYNONYM NAME
SYNONYM VERSION
RECORD NAME
VERSION

PREFIX

SUFFIX

VIEW ID

RECORD NAME
VERSION
PREPARED BY
REVISED BY

DATE LAST UPDATED
DATE CREATED
DESCRIPTION

SCHEMA

Entity-type name
PREPARED BY
REVISED BY

DATE LAST UPDATED
DATE CREATED

DATE COMPILED
DESCRIPTION

SUBSCHEMA

Entity-type name
PREPARED BY
REVISED BY

DATE LAST UPDATED
DATE CREATED
DESCRIPTION
SCHEMA NAME
SCHEMA VERSION

TASK

NAME

VERSION

PREPARED BY
REVISED BY

DATE LAST UPDATED
DATE CREATED
DESCRIPTION

Date Selection Criteria:

In the following WHERE clause options, you can select

the date as a value-comparison string in the form '"MM/DD/YY"' on the right-hand side
of the conditional expression:

» DATE CREATED
» DATE LAST UPDATED
» DATE COMPILED

The extraction interprets the date in CCMMDDY'Y form to accurately determine the
relationship of dates. For example, the following DISPLAY ALL statement specifies
the search criteria to identify the RECORD occurrences whose DATE CREATED
values (which are also evaluated in CCYYMMDD form) are greater than the specified
string:

3-50 CA-IDMS IDD DDDL Reference

3.7 Displaying entity occurrences

display all records where
date created ¢« '01/01/96'.

The DISPLAY ALL process determines that the date '01/01/96' is greater than the date
'12/31/95'.

Alternatively, you can specify the value-comparison string on either side of the
conditional expression in the form 'CCYYMMDD' to achieve the same results.

You can substitute day, month, or year for each of the WHERE clause options. For
example, the following DISPLAY ALL statement specifies a search condition which is
based on month and year:

display all records where

month created = '01' and
year created <« '95'.

3.7.4 DISPLAY/PUNCH examples

Displaying a single entity occurrence: The following four statements illustrate
DISPLAY/PUNCH statements that request information about a single entity
occurrence.

1. IDD displays as comments the user-defined nests associated with the system
PAYROLL.
display system payroll

with user defined nests
as comments.

*+ add

*+ system name is payroll version is 1

*+ 'prerequisite system' is 'employee maintenance'
*+ version 1

*+

2. SET OPTIONS establishes HISTORY as the default display option and AS
COMMENTS as the output format.

set options for session
display with history as comments.

3. IDD displays the definition of the CUSTOMER record with ELEMENT and
PICTURE OVERRIDES specifications in addition to HISTORY .

display record customer
also with elements picture overrides.

*+ add

*+ record name is customer version is 1

*+ date created is 02/19/83

*+ date last updated is 12/21/90

*+ prepared by wmc

*+ revised by wmc

*+ .

*+ record element is cust-name version 1 line is 000100
*+ level number is 02

*+ usage is display
*+ .

4. 1DD displays the same definition without the PICTURE OVERRIDES option.

Chapter 3. General DDDL Syntax Options 3-51

3.7 Displaying entity occurrences

display record customer
without picture overrides.

*+ add

*+ record name is customer version is 1

*+ date created is 02/19/83

*+ date last updated is 12/21/90

*+ prepared by wmc

*+ revised by wmc

*+ record length is 119

*+ record name synonym is customer version 1
*+ .

*+ record element is cust-name version 1
*+ level number is 02

*+

Displaying/punching multiple entity occurrences: The following example
illustrates a DISPLAY/PUNCH statement that requests multiple entity occurrences.
IDD displays the first five occurrences of the ELEMENT entity type; to submit the
resulting ADD ELEMENT statements to the DDDL compiler, you must press ENTER.

display first 5 elements

verb add

as syntax.
add element name is field-array version is 1 .
add element name is emp-fname-09-ws version is 9 .
add element name is emp-Tname-09-ws version is 9 .
add element name is emp-name-09-ws version is 9 .
add element name is emp-info-09-ws version is 9 .

In the following example, IDD displays as comments all modules that contain the
literal MOD- as part of the module name.
display all modules

where name contains 'mod-'
as comments.

In the following example, IDD punches al files to the module DEMO-PUNCH.

punch all files
to module demo-punch
as syntax.

3-52 CA-IDMS IDD DDDL Reference

Chapter 4. Entity-Type Syntax

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23

4.
4.
4.
4.
4.

4.24
4.25
4.26
4.27
4.28
4.29

OVerview 4-3
Considerations for syntax presentation 4-4
ATTRIBUTE 4-6
CLASS . . 4-13
DESTINATION 4-18
ELEMENT 4-25
ELEMENT SYNONYM 4-40
ENTRY POINT 4-42
FILE . . . e 4-47
FILE SYNONYM e 4-57
LINE . . . 4-59
LOAD MODULE 4-66
LOGICAL TERMINAL 4-71
MAP . 4-78
MESSAGE 4-85
MODULE (PROCESS/QFILE/TABLE) 4-92
PANEL (SCREEN) e, 4-107
PHYSICAL TERMINAL 4-112
PROCESS 4-120
PROGRAM e 4-129
QFILE . . . 4-148
QUEUE 4-156
RECORD (REPORT/TRANSACTION) 4-163
23.1 RECORD statement 4-164
23.2 RECORD ELEMENT substatement 4-183
23.3 COBOL substatement 4-196
234 REMOVE ALL substatement 4-205
235 VIEW ID substatement 4-205
RECORD SYNONYM e 4-207
SYSTEM (SUBSYSTEM) 4-209
TABLE 4-216
TASK 4-228
USER . . . e 4-236
USER-DEFINED ENTITY 4-257

Chapter 4. Entity-Type Syntax 4-1

4-2 CA-IDMS IDD DDDL Reference

4.1 Overview

4.1 Overview

To populate, update, or access the dictionary, the user submits to the DDDL compiler
a source statement that is unique to each entity type.

The verbs described in the following table specify the action the DDDL compiler is to
take for each DDDL statement.

Verb

Action

ADD

Creates a new entity occurrence in the dictionary.

MODIFY

Changes an existing entity-occurrence definition.

REPLACE

Initializes to defaults or excludes all options associated with an
existing entity occurrence; relationships that have been
established through other entity-type statements or other
CA-IDMS compilers are not affected.

DELETE

Removes an existing entity occurrence. DELETE is not valid for
entity occurrences that have been defined with the system
generation compiler.

DISPLAY/PUNCH

Lists all or selected portions of one or more existing entity
occurrences.

Note: These verbs are valid only if the entity occurrence has been created by the
DDDL compiler. For alist of CA-IDMS components that populate the
dictionary and the record types that they update, refer to the & USDDR..

This chapter presents syntax, parameter descriptions, and usage tips for each entity
type. Entity types are in alphabetical order.

Chapter 4. Entity-Type Syntax 4-3

4.2 Considerations for syntax presentation

4.2 Considerations for syntax presentation

Order of presentation: This order of presentation is followed for each entity type:
1. Syntax for ADD/MODIFY/REPLACE/DELETE

Note: Where it is necessary to expand a parameter, the location of the expansion
is noted in the diagram.

2. Syntax for DISPLAY/PUNCH
(for listing a single entity occurrence)
3. Syntax for DISPLAY/PUNCH ALL
(for listing multiple entity occurrences)
4. Parameter descriptions for all syntax
5. Usage tips
6. Examples
Repetition of parameter descriptions: All parameters for the WITH/ALSO
WITH/WITHOUT clause of DISPLAY/PUNCH are described in detail under 2.4.2,
“SET OPTIONS syntax” on page 2-9; these parameters are not repeated for each

entity. An exception to this is when there are specia considerations that apply to a
specific entity type.

Descriptions of parameters presented in Chapter 3, “General DDDL Syntax Options”
on page 3-1 are not repeated unless specia considerations apply.

Verb synonyms: Where the verbs ADD, MODIFY, and DELETE are used, their
respective synonyms (CREATE, ALTER, and DROP) are assumed.

Default values: Default values shown are for ADD and REPLACE statements.

MODIFY statements assume as defaults the parameters used in the ADD or most
recent MODIFY statement.

Relationships between clauses and verbs: Note the following points about the
relationships between specific clauses and specific verbs:

® Optional clauses can appear in ADD, MODIFY, and REPLACE statements, unless
otherwise noted.

» Clauses that apply to only one verb are noted in the parameter description.
» Clauses that are required with ADD statements appear as optional in the syntax,
but are noted as mandatory in the parameter description.

Entity types used only with CA-IDMS products: Four of the entity types
described in this chapter are used only with specific CA-IDMS data management
products; the entity types and products are as follows:

4-4 CA-IDMS IDD DDDL Reference

4.2 Considerations for syntax presentation

Entity Type Product

MESSAGE CA-IDMS/DC, CA-IDMS/UCF, and CA-ADS
PROCESS CA-ADS

QFILE CA-OLQ

TABLE CA-IDMS/DC and CA-IDMS/UCF

Security: After securing the product through the SECURITY clause of the SET
OPTIONS statement (see 2.4, “SET OPTIONS statement” on page 2-8), the database
administrator can control entity-type security by verb, using the AUTHORITY clause
in the USER statement.

If the SET OPTIONS statement specifies that security for a certain product is enabled
(ON), the user must be assigned the proper authority to issue verbs and statements for
related entities.

Chapter 4. Entity-Type Syntax 4-5

4.3 ATTRIBUTE

4.3 ATTRIBUTE

ATTRIBUTE statements are used to establish, maintain, delete, display, and punch
attributes. Optional clauses:

» |dentify the user who created or revised the attribute
= Permit or prevent direct deletion of the attribute
» Relate one class and attribute to another class and attribute

® Control the association of an attribute with other attributes by means of relational
keys

All entity-occurrence documentation options described in Chapter 3 are supported.

Syntax: ATTRIBUTE statement

> ADD ATTribute name is attribute-name >
MODi fy
REPTace
DELete

L WITHin class class-name i

A

A

| >

LE PREpared by user-id
REVised I L PASsword is password —J

A

|— NEW NAMe is new-attribute-name J

L deletion LOCk is —[OFFj
ON

| |
| >
LI: INClude « USEr is user-id |
EXClude h L user-specification —J

(for complete user-specification syntax, see USER clause in Chapter 3)

A

v

A\

4-6 CA-IDMS IDD DDDL Reference

4.3 ATTRIBUTE

L PUBTic access is _I:_________:I_ for ALL « _ 1
ALLOwed NONe
UPDate —
MODify —
REPTace —
DELete —
DISplay —
— |I >
INClude « class-name is attribute-name
L[EXClude ——,_ I TEXt is user-text —l
>—‘I, >
L—[: INCTude « relational-key is attribute-name
EXClude ——:]_ L ATTribute i

|
|

\
\4

L WITHin class class-name JL TEXt is user-text]

INClude « relational-key is class-name is attribute-name
EXClude ——:I_

I ,

| >

A\

L— TEXt is user-text i

»—

I
|
L—[: INCTude « entity-type-name is entity-occurrence-name
EXClude j_[USER-ENtity ——I—

|
|

\ 4

\ 4
\4

HIGhest

L— Version is —{E version-number ———J L— TEXt is user-text —J
LOWest

|

»—
>

v

DEFinitio
comment-key

i
L e L qurr
EDIt _{E COMments ——:E]———i— edit-instruction QUIT
n

I

>
COMments is _I: NULT
DEFinition comment-text

comment-key

DISPLAY/PUNCH ATTRIBUTE statement (for a single attribute)

Chapter 4. Entity-Type Syntax 4-7

4.3 ATTRIBUTE

»—[DISp]ay_—I— ATTribute name is attribute-name

PUNch

v

L WITHIn class class-name i

v

L PREpared by user-id

L PASsword is password —I

Y
-——

I
WITh {—— ALL COMment TYPes
ALSo WITh } — ALL «

WITHOut — ATTributes

— DEFinitions
— DEStinations
— DETails

— ELements
— ENTRy points

— FILes
— HIStory

— LINes

[{oreatemminals
LTErms

— MAPs

MODules

MODules ONLy —
PROCesses
QFIles
TABles
— NONe

PANels
—[SCReens J

PHYsical-terminals
—[PTErms 4—,—
— PROCesses
— PROgrams
— QFIles
— QUEues
— RECords
— REPorts

SYStems
—[SUBSYstems J
— TABles
— TASks
— TRAnsactions
— USErs

USEr DEFINED COMment
T UDCE e T

USEr DEFINED NESts
Loy ————— T

— WHEre USED

4-8 CA-IDMS IDD DDDL Reference

4.3 ATTRIBUTE

A\

\ 4

L 1o

SYSpch
_I: MODule module-name B]
Version is version-number —
_E HIGhest
LOWest

v

\ 4

[

| LANguage is language I PREpared by user-id []
PASsword is password

L VERB DISplay L AS T SYNtax ——:]—J
PUNch COMments
ADD
MODi fy
REPTace
DELete

A

DISPLAY/PUNCH ATTRIBUTE statement (for multiple attributes)

>>—I: DISp]a ALL I ATTributes ———
PUNch FIRst
NEXt L— nt1t -count |
LASt
PRIor
L PREpared by user-id |

L PASsword is password —J

A
4

L WHEre conditional-expression _

(for complete conditional-expression syntax, see WHERE clause in Chapter 3)
LBY—[SET<;|—‘
AREa

l— T0 —[SYSpCh

MODule module-name

v

\ 4

A

HIGhest
LOWest

L— Version is _{E version-number ———J

> | >

|

! LANguage is language It PREpared by user-id [5
PASsword is password

L VERB DISplay L AS T SYNtax ——:]—J
PUNch COMments
ADD
MODi fy
REPTace
DELete

A

Chapter 4. Entity-Type Syntax 4-9

4.3 ATTRIBUTE

Parameters

ATTribute name is attribute-name
Identifies a new attribute to be established within an existing class or an existing
attribute to be modified, replaced, deleted, displayed, or punched. Attribute-name
must be a 1- through 40-character value that is unique within the specified class.

WITHin class class-name
References an existing class. Class-name must be a 1- through 20-character
alphanumeric value. WITHIN CLASS is a required parameter within ADD
statements and is required within MODIFY, REPLACE, DELETE, DISPLAY, and
PUNCH statements if the named attribute is not unique in the dictionary.

NEW NAMe is new-attribute-name
Specifies a new name for the requested attribute. New-attribute-name must
conform to the rules for attribute-name, as described above. This clause changes
only the name of the attribute; it does not alter or delete any previously defined
relationships between the attribute and any class or entity. Subsequent references
to the attribute must specify the new name. The attribute cannot be renamed if
DELETION LOCK IS ON is specified.

deletion LOCK is
Allows or disallows the deletion or renaming of named attributes.

OFF
Permits the user to delete or rename the named attribute. Attributes within the
predefined classes LANGUAGE and MODE cannot be deleted if they are
connected to any other entity, even if the deletion lock is off. OFF is the default.

ON
Prohibits the user from deleting or renaming the named attribute. If DELETION
LOCK IS ON is specified, a MODIFY ATTRIBUTE statement specifying
DELETION LOCK IS OFF must be submitted before the attribute can be deleted
or renamed.

relational-key is AT Tribute attribute-name
Associates the named attribute with another attribute through a previously defined
relational key. The keyword ATTRIBUTE is required only if attribute-name
matches an existing class name.

WITHIn class class-name
Specifies a class name when the named attribute participates in more than one
class; class-name must reference an existing class.

relational-key is class-name is attribute-name
Associates the named attribute with another attribute through a previously defined
relational key.

entity-type-name/USER-ENTLity is entity-occurrence-name
Relates the named attribute directly to the specified occurrence of the named
entity type. USER-ENTITY relates the attribute to the specified user as an
attribute of that user.

4-10 CA-IDMS IDD DDDL Reference

4.3 ATTRIBUTE

WITh/ALSo WITh/WITHOut
Includes or excludes the specified options when the named attribute is displayed
or punched. Detailed information for each DISPLAY/PUNCH option is under
2.4.2, “SET OPTIONS syntax” on page 2-9. The options that are listed below
present special considerations for this entity type.

DETails
Includes the DELETION LOCK specification.

ATTributes
Includes al attributes with which the named attribute is associated. Because
attributes can be connected to many entities, a DISPLAY WITH ATTRIBUTES
reguest can generate substantial output.

Usage: Considerations for assigning attributes

The following considerations apply to assigning attributes to a class:

= ADD ATTRIBUTE statements are used to define the attributes for each class that
has been assigned the ATTRIBUTES ARE MANUAL qualifier. If aclass has
been assigned the ATTRIBUTES ARE AUTOMATIC qudlifier, its attributes are
added to the dictionary automatically the first time that the DDDL compiler
encounters an undefined attribute within the class/attribute clause of an entity-type
statement. See 3.6.2, “Attribute/entity relationships’ on page 3-38 for further
details.

n |f the SET OPTIONS statement specifies SECURITY FOR CLASS AND
ATTRIBUTE IS ON, the user must be assigned the proper authority to issue
ATTRIBUTE statements.

» When aclassis deleted, all attributes owned by that class are also deleted,
regardless of the delete locks on the attributes or the user authority for the
atributes.

If you specify REPLACE
If you specify REPLACE, the DDDL compiler initializes to defaults and/or excludes

the following options:

Related attributes

USER REGISTERED FOR

PUBLIC ACCESS
COMMENTS/DEFINITION/comment-key

The following relationships are not affected:
» Attributes to which the named attribute is related
» Entities associated with the named attribute
Examples: Assuming that class ENTITY-STATUS and user DBA exist in the

dictionary, the following statement defines attribute DESIGN within
ENTITY-STATUS, sets the attribute deletion lock on, and supplies comment text.

Chapter 4. Entity-Type Syntax 4-11

4.3 ATTRIBUTE

add attribute design within class entity-status
prepared by dba password is 'ice 9'
deletion Tock is on
comments 'designates design occurrences'.

The following statement modifies the definition of the attribute DESIGN, disabling the
deletion lock in order to rename the attribute.
modify attribute design

revised by dba password is 'ice 9'

deletion lock is off

new name is proposed

deletion lock is on

comments 'designates proposed occurrences'.

The following statement requests the DDDL compiler to display the attribute
PRODUCTION dong with any programs to which PRODUCTION is related.

display attribute production
with programs.

The following statements request the DDDL compiler to disable the deletion lock and
to delete the attribute PROPOSED.
modify attribute proposed

revised by dba password is 'ice 9'
deletion Tock is off.

delete attribute proposed.
prepared by dba
password is 'ice 9'.

The following statement defines the attribute LAUREL PIPPEN within class
STUDENT and relates Laurel Pippen to the Hartwell School by means of a
class/attribute structure (SCHOOL is the class, HARTWELL is the attribute).

add attribute 'Taurel pippen' within class student
school is hartwell.

4-12 CA-IDMS IDD DDDL Reference

4.4 CLASS

4.4 CLASS

CLASS statements are used to establish, maintain, replace, delete, display, and punch
classes. Optional clauses are used to:

» |dentify the user-origin of the class
» Determine if the class is to be directly established as a user-defined entity type

» Specify quaifiers that determine how the class's attributes are to be added to the
dictionary and that govern how many attributes can be related to each entity
occurrence.

= Permit or prevent the direct deletion or renaming of classes

® |nclude, delete, or edit comment text

Syntax: CLASS statement

ADD CLAss name is class-name
MOD{ fy
REPTace
DELete

L[PREpared by user-id
REVised I L PASsword is password —J

v

\4

[

\4

<
<

L NEW NAMe is new-class-name J

l— CLAss TYPe is —[CLAss 4;]—‘
ENTIty

<
<

v

v

L : j_l
ATTributes are MANual « PLUral «
—[AUTomaticj_[SINgular
L deletion LOCk is —[OFF;I—‘
' |
|

. |
|~ EDIt COMments V— edit-instruction 1 QuUIT
E DEFinition ;'
mment-ke

[of0) -Key

v

A\

\4

»—

I
|
COMments is —[NULT
DEFinition comment-text

comment-key

DISPLAY/PUNCH CLASS statement (for a single class)

Chapter 4. Entity-Type Syntax 4-13

4.4 CLASS

>>—I: DISplay CLAss name is class-name
PUNch)

v

L PREpared by user-id

L PASsword is password _

v

WITh
ALSo NITd
WITHOut

<« —

ALL |
ALL COMment TYPes
ATTributes
COMments
DEFinitions
DETails
HIStory
NONe
USEr DEFINED COMments
UDCs I

USEr DEFINED NESts T
L UDNs

v

A

\ 4

|_ TO —|: SYSpch

MODuTe module-name

HIGhest
LOWest

L— Version is _{E version-number ———J

L LANguage is language 11 PREpared by user-id

A

[

| PASsword is password]

A

L VERB DISplay
PUNch
ADD
MODi fy
REPTace
DELete

|_ AS —E SYNtax j—‘
COMments

DISPLAY/PUNCH CLASS statement (for multiple classes)

4-14 CA-IDMS IDD DDDL Reference

4.4 CLASS

CLAsses

\4

>>—I: DISp]a ALL
PUNch FIRst
NEXt :Ej L— nt1t -count —J

LASt
PRIor

L PREpared by user-id B N |
PASsword is password

< >
<

L WHEre conditional-expression _

(for complete conditional-expression syntax, see WHERE clause in Chapter 3)
LBY—[SET<:|’J
AREa

L TO SYS
ch
T vorr

MODule module-name

v

\ 4

A

HIGhest
LOWest

L— Version is _{E version-number ———J

> | >

|

! LANguage is language It PREpared by user-id [5
PASsword is password

A

L VERB DISplay L AS T SYNtax ——:]—J
PUNch COMments
ADD
MODi fy
REPTace
DELete
Parameters:

CLAss name is class-name
Identifies a new class to be established in the dictionary or an existing class to be
modified, replaced, deleted, displayed, or punched. Class-name must be a
1-through 20-character name that does not duplicate an existing class name.

NEW NAMe is new-class-name
Specifies a new name for the requested class. New-class-name must conform to
the rules for class-name (described above). This clause changes only the name of
the requested class; it does not ater or delete any previously defined attributes or
attribute/entity relationships within the class. Subsequent references to the class
must specify the new name. If DELETION LOCK IS ON is specified, the DDDL
compiler will not process the NEW NAME clause.

CLASs TYPeis
Determines whether class is established as a class or as a user-defined entity type
in the dictionary.

Chapter 4. Entity-Type Syntax 4-15

4.4 CLASS

CLAss
Class is established as a class in the dictionary. This is the defaullt.

ENTIty
Class is established as a user-defined entity type in the dictionary. This option
allows the user to define occurrences of the entity by using the user-defined entity
statement as described under 4.29, “USER-DEFINED ENTITY"” on page 4-257
later in this chapter.

ATTributes are
Assigns qualifiers to attributes associated with the named class.

MANual
Specifies that attributes must be added to the dictionary explicitly by using the
ADD ATTRIBUTE statement.

AUTomatic
Specifies that attributes are added to the dictionary automatically when they are
named in a class/attribute clause within an entity-type statement.

PLUral
Specifies that multiple attributes can be related to an entity occurrence. PLURAL
is the defaullt.

SINgular
Specifies that only one attribute can be related to an entity occurrence.

deletion LOCK is
Controls the class deletion lock.

OFF
Permits the user to delete or rename the named class. OFF is the default. Even if
DELETION LOCK IS OFF is specified, the predefined classes LANGUAGE and
MODE cannot be deleted if any attributes exist within those classes.

ON
Prohibits the user from deleting or renaming the named class. If DELETION
LOCK IS ON is specified, a MODIFY CLASS statement specifying DELETION
LOCK IS OFF must be processed before the named class can be deleted or
renamed.

WITh/ALSo WITh/WITHOut
Includes or excludes the specified options when the named class is displayed or
punched. Detailed information for each DISPLAY/PUNCH option is under 2.4.2,
“SET OPTIONS syntax” on page 2-9. The option that is listed below presents
specia considerations for this entity type.

DETails
Includes the DELETION LOCK, ATTRIBUTES ARE, and CLASS TYPE
specifications.

Usage: Considerations

The following considerations apply to using CLASS statements:

4-16 CA-IDMS IDD DDDL Reference

4.4 CLASS

n |f the SET OPTIONS statement specifies SECURITY FOR CLASS AND
ATTRIBUTE IS ON, the user must be assigned the proper authority to issue
CLASS statements.

» When aclassis deleted, all attributes owned by that class are also deleted,
regardless of the delete locks on the attributes or the user authority for the
atributes.

If you specify REPLACE

If you specify REPLACE, the DDDL compiler initializes to defaults and/or excludes
the following option:

USER REGISTERED FOR
PUBLIC ACCESS
COMMENTS/DEFINITION/comment-key

Attributes associated with the named class are not affected.
If you specify DELETE

If you specify DELETE, the DDDL compiler deletes the requested class and all
attributes owned by that class, regardless of the delete locks on or the user authority
for the attributes.

Examples: The following statement adds the class ENTITY-STATUS with the
attribute qualifiers of manual and singular and sets the deletion lock on.

add class entity-status
prepared by dba password is 'ice 9'
deletion Tock is on
attributes are manual singular.

The following statements add the class ENTITY-TY PE (by default, the class is
assigned the manual and plural qualifiers and the deletion lock is turned off) and
modify the class name and default attributes qualifier and deletion lock specifications.

add class entity-type
prepared by dba password is 'ice 9'.

modify class entity-type
revised by dba password is 'ice 9'
new name is occurrence-type
deletion lock is on
attributes are singular.

The following statement adds the class COURSE and assigns it a class type of
ENTITY and the automatic and plural qualifiers.

add class course
prepared by dba password is 'ice 9'
class type is entity
attributes are automatic plural.

Chapter 4. Entity-Type Syntax 4-17

4.5 DESTINATION

4.5 DESTINATION

DESTINATION statements are used to document groups of users or logica terminals
as a single logical destination within a teleprocessing system. The inclusion of a
logical destination in a DC/UCF system permits the routing of a message
simultaneously to all users or logical terminals that are included in the destination
definition.

Note: It is recommended that you maintain DESTINATION definitions using the
system generation compiler, not the DDDL compiler. If a system generation
component is processed by the DDDL compiler, only dictionary security is
checked, not system generation security. For more information on using the
system generation compiler, refer to CA-IDMS System Generation.

If the SET OPTIONS statement specifies SECURITY FOR IDMS-DC IS ON, the user
must be assigned the proper authority to issue DESTINATION statements.

Syntax: DESTINATION statement

4-18 CA-IDMS IDD DDDL Reference

4.5 DESTINATION

\4

ADD DEStination name is destination-name
MODi fy
REPTace
DELete
|— Version is version-number
H HIGhest
NEXt LOWest

| >

A
4

A
4

L[PREpared by user-id
REVised ——I_ L PASsword is password J

A
4

|
L destination —l

DEScription is description-text _

|

|
>
l—[INCTude « USEr is user-id |
EXClude h L user-specification l

(for complete user-specification syntax, see USER clause in Chapter 3)

L PUBTic access is ﬁ for ALL « _ 1
ALLOwed NONe

UPDate —
MODify —
REPTace —
DELete —
DISplay —

v

\4

. L,

T
»—| »
I-[INClude <_-I- within SYStem system-name N J|
EXClude system-specification

(expanded system-specification syntax follows this syntax diagram)

' |

| >
INClude « class-name is attribute-name |
EXCTude ——,_

|- TEXt is user-text —l

[
»—
=V

LOGical terminal is logical-terminal-name —

L DC option is —E USEr is user-id

|
DELete (~l:¢— logical-terminal-name 1) -

\— user-id

Chapter 4. Entity-Type Syntax 4-19

4.5 DESTINATION

I

DEFinitio
comment-key

']
L EDIt —E COMments T\L— edit-instruction J— QUIT
n

I

v

COMments is —E NUL1
DEFinition comment-text
comment-key

Expansion of system-specification

L— Version is version-number ———J
—E HIGhest
LOWest

| I
|

\ 4

L CONnect USEr is user-id il

I

A

L CONnect _I: LOGical-terminal :I_ is logical-terminal-name
LTErm

\ 4

HIGhest
LOWest

|— Version is —E version-number —J

DISPLAY/PUNCH DESTINATION statement

(for a single destination)

v
A

4-20 CA-IDMS IDD DDDL Reference

4.5 DESTINATION

>>—I: DISp]aX_:I— DEStination name is destination-name

PUNch

\4

L PREpared by user-id

v

|

L PASsword is password]

\4

\4

WITh v
ALSo WITh :‘
WITHOut

ALL
ALL COMment TYPes
ATTributes

HIStory

DETails

COMments
DEFinitions

LOGical-terminals
NONE

SYStems B
SUBSYstems
USErs

T HSEP DEFINED COMments T

DCs

A

L T0 —E SYSpCh

MODule module-name

\ 4

L Version is

version-number —
_{E HIGhest ———
LOWest

\4

|

| LANguage is language I PREpared by user-id

A

|
L PASsword is password —J

L VERB DISplay
PUNch
ADD
MODi fy
REPlace
DELete

I— AS —[SYNtax

COMment

DISPLAY/PUNCH DESTINATION statement

(for multiple destinations)

\4
A

-

Chapter 4. Entity-Type Syntax 4-21

4.5 DESTINATION

DEStinations ——

PUNch FIRst
NEXt 4 |— nt1t -count J

LASt
PRIor

A
4

| -

L PREpared by user-id T H
PASsword is password

A
4

L WHEre conditional-expression _

(for complete conditional-expression syntax, see WHERE clause in Chapter 3)

v

L— BY SET «
L
AREa

A

\ 4

|_ TO —[SYSpch

MODuTe module-name

HIGhest
LOWest

L— Version is _{E version-number ———J

> | >

[

L LANguage is language 11 PREpared by user-id []
PASsword is password

A

A

L VERB DISplay L AS T SYNtax ——:]—J
PUNch COMments
ADD
MODi fy
REPTace
DELete

Parameters:

DEStination name is destination-name
Identifies a new destination to be established in the dictionary or an existing
destination to be modified, replaced, deleted, displayed, or punched.
Destination-name must be a 1- through 8-character alphanumeric value.

within SY Stem system-name
Associates the named destination with (INCLUDE) or disassociates it from
(EXCLUDE) the specified system and defines the users or logical terminals that
congtitute the destination for that system. System-name must be the 1- through
32-character name of an existing system.

If EXCLUDE is specified without a CONNECT specification, the compiler
removes the destination/system relationship and any dependent user or
logical-terminal associations.

WITHIN SYSTEM is documentational only, unless the system generation
compiler COPY facility is to be used to copy destination definitions from an
IDD-built system. When the COPY facility is not used, destination/system

4-22 CA-IDMS IDD DDDL Reference

4.5 DESTINATION

relationships are established and maintained by the system generation compiler.
DESTINATION statements cannot modify or delete destination definitions copied
into DC/UCF systems by the system generation compiler.

The WITHIN SYSTEM clause can be repeated to establish additional
destination/system relationships.

CONnect USEr is user-id
Associates a user with the destination/system relationship. User-id must reference
an existing user in the dictionary. In DC/UCF environments, CONNECT is
documentational only; the functional relationship must be established with the
system generation compiler.

CONnect LOGical-terminal is logical-terminal-name
Associates a logical terminal with the destination/system relationship.
Logical-terminal-name must reference an existing logical terminal that is already
associated with the named system. In DC/UCF environments, CONNECT is
documentational only; the functional relationship must be established with the
system generation compiler.

DC option is
Directs the system generation compiler to establish a destination/user or
destination/logical terminal relationship when it copies the named destination into
a DC/UCF system, and defines or deletes the users or logical terminals.

USETr is user-name
Specifies one or more users that constitute the destination. User-name must
reference an existing user in the dictionary.

LOGical terminal is logical-terminal-name
Specifies one or more logical terminals that constitute the destination.
Logical-terminal-name must reference an existing logica terminal in the
dictionary.

DEL ete logical-terminal-name/user-name
Deletes the specified list of logical terminals or users from the destination.
Multiple logical-terminal/user names must be separated by a comma and one or
more blanks.

WITh/ALSo WITh/WITHOut
Includes or excludes the specified options when the named destination is displayed
or punched. Detailed information for each DISPLAY/PUNCH option is under
2.4.2, “SET OPTIONS syntax” on page 2-9. The option that is listed below
presents special considerations for this entity type.

DETails
Includes the DESCRIPTION IS and DC OPTION clauses.
Usage: If you specify REPLACE
If you specify REPLACE, the DDDL compiler initializes to defaults and/or excludes
the following options:

DESCRIPTION

Chapter 4. Entity-Type Syntax 4-23

4.5 DESTINATION

USER REGISTERED FOR

PUBLIC ACCESS
COMMENTS/DEFINITION/comment-key
WITHIN SYSTEM

Related attributes

The WITHIN SYSTEM and DC OPTIONS specifications are replaced only if they
have been established by the DDDL compiler. The following relationships established
by the system generation compiler are not affected:

m Systems and connected users/logical terminals

m Users, logica terminals, and printers constituting the destination

Example: In the following example, the ADD statement associates destination
OEBOST with the online system INVENTORY. OEBOST comprises logical terminals
LTR22, LTR23, and LTR24. The MODIFY statement disassociates destination
OEBOST from the INVENTORY system and defines the logical terminas as
components of a DC/UCF system.

add destination oebost
prepared by dba password is 'ice 9'
description 'online order entry terminals -- boston'
within system inventory
connect logical-terminal is 1tr22
connect logical-terminal is 1tr23
connect logical-terminal is 1tr24.

modify destination oebost
revised by dgs
description 'online order entry terminals -- boston'
exclude system inventory
dc-option is logical-terminal is 1tr22
dc-option is logical-terminal is 1tr23
dc-option is logical-terminal is 1tr24.

4-24 CA-IDMS IDD DDDL Reference

4.6 ELEMENT

4.6 ELEMENT

ELEMENT statements are used to define group or elementary data elements. Also
known as fields and data items, elements can participate in records built by the DDDL
compiler, by the CA-IDMS schema compiler, or in maps built by the DC/UCF
mapping compiler; elements can also exist independently in the dictionary. An
element can have a maximum length of 32,767 characters.

Optional ELEMENT statement clauses allow the user to:
» Define element synonyms.
® Describe up to four alternate pictures for an element.

» Relate elements to users and to other elementary and group elements; the syntax
supports attribute/entity relationships, al entity-occurrence documentation options,
and al 1974 ANSI COBOL picture options.

Defining group element occurrences: The user defines and maintains group
element occurrences by means of SUBORDINATE ELEMENT clauses, which provide
one method for documenting multiply-occurring or redefined elements/groups in the
dictionary.

Modifying an element definition: When the user modifies an element definition,
the DDDL compiler does not modify the definitions of records in which the named
element participates. Record elements must be modified individually by using the
RECORD ELEMENT substatement, described under 4.23, “RECORD
(REPORT/TRANSACTION)” on page 4-163 later in this chapter.

Deleting element occurrences: The user cannot delete element occurrences that
are members of a group element structure or that participate in IDD- or schema-built
records. To delete an elementary element, the user must first disassociate it from the
group element; to delete a record element, the user must first delete its associated
record or schema. To prevent the deletion of an element when the only record in
which it participates is deleted, select the SET OPTIONS statement DELETE 1S OFF
option for the session; see 2.4, “SET OPTIONS statement” on page 2-8 for further
details.

Required authority: [If the SET OPTIONS statement specifies SECURITY FOR
IDD IS ON, the user must be assigned the proper authority to issue ELEMENT
Statements.

Syntax: ELEMENT statement

Chapter 4. Entity-Type Syntax 4-25

4.6 ELEMENT

ADD ELement name is element-name
MODi fy
REPTace
DELete

A

v

|— Version is version-number
Em—[HIGhest
NEXt LOWest

A

L[PREpared by user-id
REVised ——I_ L PASsword is password J

[
»—|
=V

L SAMe AS ElLement element-name

LOWest

I— Version is version-number —J
—E HIGhest

v

»—

[
|
L

L COPy —— ELements ———————— FROm element element-name

— ALL COMment TYPes —
— ATTributes

— USErs

— COMments

— DEFinition

— VALues

— RANges

— comment-key

— relational-key ——

HIGhest

L Version is —E version-number —
LOWest

A

v

|— NEW NAMe is new-element-name

NEXt —[

A

|— Version is —E version-n

umber
HIGhest
LOWest

I

v

|— NEW Version is —[new-version-number
NEXt —|: HIGhest
LOWest

4-26 CA-IDMS IDD DDDL Reference

4.6 ELEMENT

A
\4

L element DEScription is description-text _]

' |
|
|—[INClude « USEr is user-id |
EXClude h L user-specification il

(for complete user-specification syntax, see USER clause in Chapter 3)

\4

\4

L PUBTic access is —’_—_|— for ALL « _
ALLOwed NONe
UPDate —
MODify —
REPTace —
DELete —j
DISplay —
>—‘I, >
l—[INClude « VALues is
EXClude j— —E are |
I initial 1
V initial-value
L (] L ALL JL condition-value]
. | .
L _ l Ly
THRu T T condition-value)
ALL
L EXClude ALL VALUES _
o 1
l—[INClude « RANge is start-value
EXClude —_I_ L THRu end-value —l
L EXClude ALL RANGES _
o 1
I—[PRimary «
alternate-format-keyword 1 L format-specification |

(expanded format-specification syntax follows this syntax diagram)

Chapter 4. Entity-Type Syntax 4-27

4.6 ELEMENT

INClude j_:I_ ELement name SYNonym is element-synonym-name

EXCTude

I

\ 4

L FOR GROup synonym group-synonym-name _

»—

I

—

L—[: INCTude « class-name is attribute-name
EXClude ——:I

L TEXt is user-text J

v

A\

\ 4

INClude « relational-key is element-name
T Metude <

A\

HIGhest
LOWest

L— Version is _{E version-number ———J L— TEXt is user-text ——J

»—
>

v

DEFinitio
comment-key

]
. ey
EDIt —{E COMments \— edit-instruction QUIT
n :;]

<« —

»—

v

A

»

COMments is —E NUL1
DEFinition comment-text
comment-key

Expansion of format-specification

4-28 CA-IDMS IDD DDDL Reference

4.6 ELEMENT

A\
\ 4
\4

L PICture is —E NULT = tl—‘
icture

picture
L USAge is T DISp]ay<_~|J
usage

L JUStify is —E OFF «
ON

A
\4

A
\4

A
\4

L BLAnk when ZERo is —E OFF «
ON

A
\4

[

L SIGn is —[|:NUL] < I
LEAding
TRAiTing JL SEParate character J
L‘: SYNc —AI_J
NO SYNc «

L EXClude SUBordinate ELements]

A

A

A
A\

T
L SUBordinate elements are —’_—J—&— subordinate-element-name
(

HIGhest ———— (R)
LOWest

|
L Version is E version-number —JI—[0CCurs occurrence-count j—‘ L) J

DISPLAY/PUNCH ELEMENT statement

(for a single element)

Chapter 4. Entity-Type Syntax 4-29

4.6 ELEMENT

T

PUNch

DISp]ay_—I— ELement name is element-name

v

L PREpared by user-id

L PASsword is password _

v

[
WITh v
ALSo WITh j
WITHOut

ALL
— ALL COMment TYPes
— ATTributes

— COMments

— DEFinitions

— DETails

— ELements
— HIStory

— MAPs

— NONE

— PROgrams
— SAMe AS

— SUBordinate ELements

— SYNonyms

— USErs

_T: USEr DEFINED COMments
U

DCs

—

USEr

T UDNS

DEFINED NESts T]

— WHEre USED

v

A

SYSpch

\ 4

LTO—E

MODuTe module-name

L— Version is _{E

version-number]
HIGhest
LOWest

L LANguage is language 11 PREpared by user-id

A

| PASsword is password]

L VERB DISplay
PUNch
ADD
MODi fy
REPTace
DELete

L AS

SYNtax

L

DISPLAY/PUNCH ELEMENT statement

(for multiple elements)

COMments :]

A

4-30 CA-IDMS IDD DDDL Reference

4.6 ELEMENT

ELEments

\4

>>—I: DISp]a ALL
PUNch FIRst

|
NEXt :Ej L— nt1t -count —J

LASt
PRIor

< >
<

L PREpared by user-id B N |
PASsword is password

< >
<

L WHEre conditional-expression _

(for complete conditional-expression syntax, see WHERE clause in Chapter 3)

v

L— BY _I: SET
AREa «

\ 4

A

L TO SYS
ch
T vorr

MODule module-name

HIGhest
LOWest

L— Version is _{E version-number ———J

> | >

|

! LANguage is language It PREpared by user-id [5
PASsword is password

A

L VERB DISplay L AS T SYNtax ——:]—J
PUNch COMments
ADD
MODi fy
REPTace
DELete
Parameters:

ELement name is element-name
Identifies a new element to be established in the dictionary or an existing element
to be modified, replaced, deleted, displayed, or punched. Element-name must be a
1- through 32-character alphanumeric value. (If you use element-name in a
program, observe the maximum-character limit of the programming language.)

NEW NAMe is new-element-name
Specifies a new name for the requested element. If a version number is not
specified, the version number defaults to the version associated with the element's
original name. This clause changes only the name of the element occurrence; it
does not alter or delete any relationships in which the element participates.
Subsequent references to the requested element must specify the new name.

Note that if the element's primary synonym (the synonym that is identical to the
primary name of the element) participates in a record, the element cannot be
renamed. For a discussion of primary synonyms, see the IDD User Guide.

Chapter 4. Entity-Type Syntax 4-31

4.6 ELEMENT

NEW Version is
Specifies a new version number for the named element.

new-version-number/NEXt HIGHEST/NEXT LOWest
Specifies a version number for the named element. The element name and new
version number must not duplicate that of an existing element name and version
number.

VALueis ALL initial-value/condition-value
Associates (INCLUDE) or disassociates (EXCLUDE) a value, range of values, or
alist of values assigned to a COBOL level-88 condition name. A list of values
must be enclosed by parentheses, with values separated by a space or comma.
Initial-value and condition-value can be 1- through 32-character numeric literals,
quoted literas, or figurative constants.

Note: If the SET OPTIONS statement specifies DECIMAL-POINT IS COMMA,
the DDDL compiler interprets a period in numeric literal as an insertion
character, and a comma as a decimal point.

THRu ALL condition-value
Specifies multiple values and ranges of values when the element is a COBOL
level-88 condition name.

EXClude ALL VALUES
Removes all VALUE clauses from the element definition. The keyword VALUES
cannot be abbreviated. Typically, the EXCLUDE ALL VALUES clause is used to
remove the values associated with an element in preparation for adding
subordinate elements.

RANge is start-value THRu end-value
Specifies a normal or expected value or range of values for the named element.
Sart-value and end-value must be 1- through 32-character numeric literals or
figurative constants. Values that contain delimiters or embedded blanks must be
enclosed in site-standard quotation marks. The user can enter each acceptable
value in a separate RANGE clause or enter a range of values in one clause that
includes the THRU option. For example:

range is 1 range is 3 range is 5

or

range is 1 thru 5

The RANGE clause is documentational except in the CA-ADS/Batch environment.
CA-ADS/Batch uses RANGE clause values to validate input data fields (see
CA-ADS User Guide).

EXClude ALL RANGES
Removes all range clauses from the element occurrence.

PRImary
Specifies the default format of the named element. The
PRIMARY /alternate-format-keyword clause is used in conjunction with the
RECORD statement FORMAT clause to determine the format of an element
within a record occurrence. For information about the FORMAT clause, see 4.23,
“RECORD (REPORT/TRANSACTION)” on page 4-163, later in this chapter.

4-32 CA-IDMS IDD DDDL Reference

4.6 ELEMENT

alter nate-format-keyword
Specifies a keyword that corresponds to an alternate format established previously
in the ALTERNATE PICTURE KEYWORD clause of the SET OPTIONS
statement (see 2.4, “SET OPTIONS statement” on page 2-8). Up to four aternate
formats can be defined for each element. The
PRIMARY /alternate-format-keyword clause is used in conjunction with the
RECORD statement FORMAT clause to determine the format of an element
within a record occurrence. For information about the FORMAT clause, see 4.23,
“RECORD (REPORT/TRANSACTION)” on page 4-163, later in this chapter.

PICtureis
Identifies the named element as an elementary element and specifies its length and

data type.

NULI
Removes the element's PICTURE, USAGE, SIGN, JUSTIFY, and BLANK
WHEN ZERO clauses and all associated subordinate elements. NULI is the
default.

Note: The maximum length of an element (including its usage) is 32,767
characters.

picture
In the case of a named element which has been previoudly defined as a group
element, PICTURE IS picture removes any associated subordinate elements except
COBOL level-88 condition names, and picture becomes the picture for the
resulting elementary element.

Picture must be a 1- through 30-character value that describes aphanumeric,
aphabetic, numeric, or numeric-edited data, as shown in the table under the bold
heading Usage, after this parameter list.

USAgeis
Specifies the physical storage characteristics of the named element.

DI Splay
Identifies the usage as alphanumeric, zoned decimal, edited, or display floating
point. DISPLAY is the default.

Users of CA-ADS: For additional information about defining display floating
point numerics, see the CA-ADS Reference manual .

usage
Identifies one of the following usages:

® BIT — Bit string
. POINTER — Fullword address constant
. CONDITION-NAME — COBOL level-88 value

» COMPUTATIONAL (COMP) (COMPUTATIONAL-4) (COMP-4)
(BINARY) — Binary

= COMPUTATIONAL-1 (COMP-1) (SHORT-POINT) — Short-precision
floating point

Chapter 4. Entity-Type Syntax 4-33

4.6 ELEMENT

= COMPUTATIONAL-2 (COMP-2) (LONG-POINT) — Long-precision

floating point
= COMPUTATIONAL-3 (COMP-3) (PACKED) — Packed decimal
JUstify is
Defines COBOL justification specifications for the named element.

OFF
Specifies that a COBOL JUSTIFIED clause is not to be generated. OFF is the
default.

ON
Specifies that a COBOL JUSTIFIED clause is to be generated.

BLANk when ZERo is
Defines COBOL zero suppression requirements for the named element.

OFF
Specifies that a BLANK WHEN ZERO clause is not to be generated for COBOL.
OFF is the default.

ON
Specifies that a BLANK WHEN ZERO clause is to be generated for COBOL.

SIGn is
Defines or deletes a sign specification for the named element.

NULI
Specifies that the sign and LEADING or TRAILING SEPARATE CHARACTER
specification is removed from the named element.

LEAding/TRAIling
Specifies that a sign is associated with the named element. Further specifies that
the sign appears in either the LEADING or the TRAILING position.

SEPar ate character
Reserves a separate character in the element definition for the sign designation.

SYNc
Specifies that the DDDL compiler must check the boundary alignment of COMP
and COMP-4 record elements when the elements are included in arecord. If a
record element is not on a fullword or halfword boundary, the record is flagged in
error.

NO SYNc
Specifies that the DDDL compiler will not check the boundary alignment of
COMP and COMP-4 record elements when they are included in arecord. NO
SYNC is the default.

EXClude SUBordinate EL Ements
Removes all subordinate elements, regardless of level number, from a group
element. The PICTURE IS NULL specification (described above) ordinarily
performs this function; however, if the subordinate elements are all level-83
condition names, the EXCLUDE SUBORDINATE ELEMENTS must be used. To

4-34 CA-IDMS IDD DDDL Reference

4.6 ELEMENT

replace existing subordinate elements with new subordinate elements, use the
SUBORDINATE ELEMENTS clause (described below).

SUBordinate EL ements ar e subordinate-element-name
Specifies that the named element is a group element and identifies one or more
subordinate elements. Subordinate-element-name is the primary name of a
subordinate element that exists in the dictionary. The SUBORDINATE
ELEMENTS clause can be repeated to define a group structure of any size. Note
that a list of subordinate-element names can be enclosed in parentheses to
eliminate errors that can occur if an element name matches a DDDL keyword.

To define afiller as a subordinate element, specify an element name of 'FIL nnnn’;
nnnn must be a 4-digit numeric value (leading zeros are required) and must be
separated from the keyword FIL by one space. For example, to generate a filler
described as FILLER PIC X(7), specify SUBORDINATE ELEMENT 'FIL 0007
Note that filler fields need not exist in the dictionary in order to be included in
group elements or records. An element can be named only once in a
SUBORDINATE ELEMENTS clause; however, fillers can appear as often as
required.

Each subordinate element can be qualified with either the OCCURS or R
parameter.

OCCurs occurrence-count
Specifies that the subordinate element is a multiply-occurring element.
Occurrence-count must be an integer in the range 1 through 32,767.

(R)

Redefines the previously named subordinate element.

NOTE 1: A redefined element cannot be defined with an OCCURS clause,
however, it can be subordinate to an element defined with an OCCURS
clause.

NOTE 2: If a subordinate element must be defined with both an OCCURS and a
REDEFINES clause, include the (R) option within the named element
definition and the OCCURS option with the definition of the record in
which the subordinate element participates.

EL ement name SYNonym is element-synonym
Associates (INCLUDE) an alternative name with or disassociates it (EXCLUDE)
from the element. Element-synonym must be a 1- through 32-character
aphanumeric value.

All elements have at least one synonym, known as the primary synonym, with the
same name and version as the element itself.

FOR GROup synonym group-element-name
Specifies that when the named element appears in a record as part of a group
element whose name matches group-element-name, the specified element synonym
is automatically used in the record. The following considerations apply:

® The group element need not exist in the dictionary.

Chapter 4. Entity-Type Syntax 4-35

4.6 ELEMENT

® Group-element-name must identify a group element at the level immediately
above el ement-synonym.

n |f element-synonym is the highest level element in a record,
group-element-name identifies the record in which the element participates.

» Group-element-name can be the primary name of a record or group, or a
synonym.

WITh/ALSo WITh/WITHOut
Includes or excludes the specified options when the named element is displayed or
punched. Detailed information for each DISPLAY/PUNCH option is under 2.4.2,
“SET OPTIONS syntax” on page 2-9. The options that are listed below present
specia considerations for this entity type.

DETails
Includes the DESCRIPTION, VALUE, and RANGE specifications and
PICTURE-related information for primary and alternative formats, including
SUBORDINATE ELEMENTS specifications.

EL ements
Includes all user-defined nests and subordinate elements.

MAPs
Includes the name of the map associated with the element occurrence or any of its
synonyms.

PROgrams
Includes the name of the program and record associated with an element
occurrence or any of its synonyms.

SYNonyms
Displays record synonyms associated with element synonyms.

Usage: Specifying a picture variable

Picture must be a 1- through 30-character value that describes the types of data shown
in the following table.

Category Character Description
Alphanumeric X Represents one aphanumeric character. If
data USAGE IS BIT, X represents one bit; the
USAGE clause is described in the parameters
list.
(n) Represents n repetitions of the alphanumeric
. character; for example, X(4) is equivaent to
;Ann integer KXXX.
parentheses
after an X
Alphabetic data A Represents one alphabetic character (A-Z).

4-36 CA-IDMS IDD DDDL Reference

4.6 ELEMENT

Category Character Description
(n) Represents n repetitions of the aphabetic
. character
An integer
in
parentheses
after an A
Numeric data 9 Represents one numeric character.
(n) Represents n repetitions of the numeric
. character.
An integer
in
parentheses
after a9
\ Represents an assumed decimal point. No
more than one V can appear in an element
picture. If the V is omitted and the P option
(described below) is not used, the assumed
decimal point is after the rightmost 9.
P Represents an assumed zero. Any number of
Ps can appear in the leftmost or the rightmost
positions of an element picture. An assumed
decimal point is automatically placed before
the first P or after the last P. The character P
does not occupy a storage position (for
example, PP9999 has a data length of 4).
S Identifies the number as positive or negative.
When used, the S must be the first character
in the element picture. When the S is omitted,
values for the element description are assumed
to be positive.
Numeric-edited z Represent edit symbols used in reporting data;
data * guotation marks are not required. Refer to the
’ appropriate programming language manual for
S:r:zr?? dgz ER the individual interpretations of these symbols.
characters described E) If the SET OPTIONS statement specifies
above, along with DB DECIMAL-POINT IS COMMA, a period (.)
the editing * is interpreted as an insertion character and a
characters shown at $ comma (,) is interpreted as a decimal point.
the right) .

If you specify REPLACE

If you specify REPLACE in the ELEMENT statement, the DDDL compiler initializes
to defaults and/or excludes the following options:

Chapter 4. Entity-Type Syntax 4-37

4.6 ELEMENT

DESCRIPTION

USAGE

PICTURE

JUSTIFY

BLANK WHEN ZERO

USER REGISTERED FOR
PUBLIC ACCESS

Related attributes

VALUE

RANGE

ELEMENT NAME SYNONYM
COMMENTS/DEFINITION/comment-key
SIGN

SUBORDINATE ELEMENTS
Alternate picture formats
Related elements

The following relationships are not affected:
® Group elements in which the named element participates

® Records in which the named element participates

Examples: In the following example, the first three ADD statements define the
elements DISCONTINUE-MONTH, DISCONTINUE-DAY, DISCONTINUE-YEAR,
documenting the normal range of values for DISCONTINUE-MONTH as 01 through
12 and for DISCONTINUE-DAY as 01 through 31. The SET OPTIONS statement
establishes a default PREPARED BY specification for the session. The fourth ADD
statement establishes the group element DISCONTINUE-DATE and names its
subordinate elements; the last ADD statement establishes an element called
DISC-DATE-X.
add element discontinue-month

prepared by dba password is 'ice 9'

picture 99
range is 01 thru 12.

set options for session
prepared by dba password is 'ice 9'

add element discontinue-day
picture 99
range is 01 thru 31.

add element discontinue-year
picture 99.

add element discontinue-date
subordinate elements
discontinue-month
discontinue-day
discontinue-year.

add element disc-date-x
picture x(6).

4-38 CA-IDMS IDD DDDL Reference

4.6 ELEMENT

In the following example, the first two ADD statements define the elements
LOWER-LIMIT and QUANTITY-ON-HAND. The third statement adds the group
element HISTORY and assigns four subordinate elements; (R) indicates that
DISC-DATE-X (established in the previous example) redefines
DISCONTINUE-DATE. DISCONTINUE-DATE is subordinate to HISTORY and is

also a group element.

add element Tower-Timit
prepared by dba password is 'ice 9'
picture 999.

add element quantity-on-hand
prepared by dba password is 'ice 9'
picture 9(4).

add element history
subordinate elements
discontinue-date
disc-date-x (r)
lTower-limit
quantity-on-hand.

The following example illustrates usage of the PRIMARY /alternate-format clause to
define alternate formats. SET OPTIONS establishes three alternate picture keywords;
the definition of element GROSS-PAY includes three alternate formats. Element
GROSS-PAY is associated with the WS-SALARY-HISTORY record; the FORMAT

clause determines the format of the elements.

set options for dictionary

first alternate picture keyword is edit-pic

second alternate picture keyword is report-pic
third alternate picture keyword is screen-pic.

add element name is gross-pay

primary

picture is s9(7)v99

usage is comp-3
edit-pic

picture is x(9)

usage is display
report-pic

picture is z,zzz,zzz.99
screen-pic

picture is 9(7)v99

bTlank when zero is on.

add record name is ws-salary-history
format is edit-pic.
record element is gross-pay.

Chapter 4. Entity-Type Syntax 4-39

4.7 ELEMENT SYNONYM

4.7 ELEMENT SYNONYM

You can display or punch selected element synonyms using the ELEMENT
SYNONYM statement.

Syntax: ELEMENT SYNONYM (for a single synonym)

>>—I: DISp]az_:]— ELEment SYNonym element-synonym-name

PUNch

A

L PREpared by user-id

L PASsword is password]

v

\
< —

<« —

ALL

WITh
ALSo WITh :ﬁ
WITHOut

NONE

MAPS
PANels
SCReens

PROgrams
RECords
REPorts

TRANsactions —

I

A

L
T0

SYSpch

MODule module-name

L— Version is —{E version-number ———J

HIGhest
LOWest

A\

| LANguage is language 11 PREpared by user-id

| PASsword is password —J

v

A

L VERB

DISplay
PUNch
ADD
MODi fy
REPTace
DELete

LAS—E

SYNtax
COMment

T

DISPLAY/PUNCH ELEMENT SYNONYM (for multiple synonyms)

4-40 CA-IDMS IDD DDDL Reference

4.7 ELEMENT SYNONYM

ELement SYNonyms ———»

>>—I: DISp]a ALL
PUNch FIRst
NEXt :Ej L— nt1t -count —J

LASt
PRIor

< >
<

L PREpared by user-id |

L— PASsword is password ——J

< >
<

L WHEre conditional-expression _

(for complete conditional-expression syntax, see WHERE clause in Chapter 3)

v

L— BY _I: SET
AREa «

A
A\

L TO SYS
ch
T vorr

MODule module-name

HIGhest
LOWest

L— Version is _{E version-number ———J

> | >

|

! LANguage is language It PREpared by user-id [5
PASsword is password

L VERB DISplay L AS T SYNtax ——:]—J
PUNch COMments
ADD
MODi fy
REPTace
DELete

A

Chapter 4. Entity-Type Syntax 4-41

4.8 ENTRY POINT

4.8 ENTRY POINT

ENTRY POINT statements document program entry points. Optional clauses:

» Associate documentational text with the entry point

» Relate the entry point to users

® Include the entry point in attribute/entity relationships
Entry points are associated with programs through the PROGRAM statement (see 4.20,
“PROGRAM” on page 4-129).

If the SET OPTIONS statement specifies SECURITY FOR IDD IS ON, the user must
have the proper authority to issue ENTRY POINT statements.

Syntax: ENTRY POINT statement

4-42 CA-IDMS IDD DDDL Reference

4.8 ENTRY POINT

\4

ADD ENTRy point name is entry-point-name
MODi fy
REPTace
DELete

PREpared by user-id
L‘: REVised ——,— L PASsword is password J

A

| >

A

L entry point DEScription is description-text _

\4

<
<

L NEW NAMe is new-entry-point-name —l

| |
|
|—[INClude « USEr is user-id |
EXClude h L user-specification ——|

(for complete user-specification syntax, see USER clause in Chapter 3)

\4

\4

< >
<

l— PUBTic access is ﬁ for ALL « —J
ALLOwed NONe

UPDate —
MODify —
REPTace —
DELete —
DISplay —

' |
INClude « class-name is attribute-name |
L[EXCTude ——’_ | TEXt is user-text ——|

' |

. |
|~ EDIt COMments V— edit-instruction 1 QuUIT
E DEFinition %
comment-ke

comment-Key

\4

\4

\4

\4

[
»—|
L

COMments is —[NUL1
DEFinition comment-text
comment-key

DISPLAY/PUNCH ENTRY POINT statement

(for a single entry point)

Chapter 4. Entity-Type Syntax 4-43

4.8 ENTRY POINT

>>—I: DISplay ENTRy point
PUNch)

name is entry-point-name

v

L PREpared by user-id B

PASsword is password _

v

<« —

WITh
ALSo NITd
WITHOut

ALL |
ALL COMment TYPes
ATTributes
COMments
DEFinitions
DETails
HIStory
NONE
PROgrams
USErs
USEr DEFINED COMments
UDCs _T__

v

A

\ 4

|_ TO —|: SYSpch

MODuTe module-name

HIGhest
LOWest

L— Version is _{E version-number ———J

L LANguage is language I PREpared by user-id

A

| PASsword is password il

L VERB DISplay
PUNch
ADD
MODi fy
REPlace
DELete

|— AS —E SYNtax —‘|—‘
COMments

DISPLAY/PUNCH ENTRY POINT statement

(for multiple entry points)

A

4-44 CA-IDMS IDD DDDL Reference

4.8 ENTRY POINT

ENTRy points ——»

>>—I: DISp]a ALL
PUNch FIRst
NEXt :Ej L— nt1t -count —J

LASt
PRIor

< >
<

L PREpared by user-id B N |
PASsword is password

< >
<

L WHEre conditional-expression _

(for complete conditional-expression syntax, see WHERE clause in Chapter 3)

v

l—BY—|:SET<
AREa

\ 4

A

L TO SYS
ch
T vorr

MODule module-name

HIGhest
LOWest

L— Version is _{E version-number ———J

> | >

|

! LANguage is language It PREpared by user-id [5
PASsword is password

L VERB DISplay L AS T SYNtax ——:]—J
PUNch COMments
ADD
MODi fy
REPTace
DELete
Parameters

ENTRYy point name is entry-point-name
Identifies a new entry point to be added to the dictionary, or an existing entry
point to be modified, replaced, deleted, displayed, or punched. Entry-point-name
must be a unique 1- through 8-character name.

NEW NAMe is new-entry-point-name
Specifies a new name for the requested entry point. This clause changes only the
name of the entry point; it does not alter or delete previously defined relationships
in which the entry point participates. Subsequent references to the requested entry
point must specify the new name.

WITh/ALSo WITh/WITHOut
Includes or excludes the specified options when the named entry point is displayed
or punched. Detailed information for each DISPLAY/PUNCH option is under
2.4.2, “SET OPTIONS syntax” on page 2-9. The option that is listed below
presents special considerations for this entity type.

Chapter 4. Entity-Type Syntax 4-45

4.8 ENTRY POINT

DETAIls
Includes the DESCRIPTION clause.

Example: In the following example, the ADD statement defines entry point
ORENbSA and relates it to the attribute DEVELOPMENT within the class
ENTITY-STATUS. The MODIFY statement excludes the DEVELOPMENT attribute
and includes the attribute PRODUCTION.

add entry point name is orenba
description is
"entry point in order-entry pgm: nxtordor'
entity-status is development.

modify entry point name is orenba
exclude entity-status is development
include entity-status is production.

4-46 CA-IDMS IDD DDDL Reference

4.9 FILE

4.9 FILE

FILE statements document card, tape, and other nondatabase files. A file can
represent groups of records (and thus elements) if a RECORD statement includes the
WITHIN FILE clause; see 4.23, “RECORD (REPORT/TRANSACTION)” on

page 4-163 later in this chapter for further details. Files are related to programs
through the PROGRAM statement FILE clause; see 4.20, “PROGRAM” on

page 4-129 later in this chapter for further details. Specifications provided in the
FILE statement are used by the CA-IDMS Data Manipulation Language precompiler
for COBOL (IDMSDMLC) during the COBOL FD COPY function.

Optional FILE statement clauses:
» Relate files to users and to other files

= Control the participation of file occurrences in attribute/entity relationships

®» Maintain documentational entries and record information required in COBOL FD
statements

® Support the definition of file synonyms

If the SET OPTIONS statement specifies SECURITY FOR IDD IS ON, the user must
be assigned the proper authority to issue FILE statements.

Syntax: FILE statement

Chapter 4. Entity-Type Syntax 4-47

4.9 FILE

ADD FILe name is file-name
MODi fy
REPTace
DELete

A

v

v

|— Version is —[version-number
NEXt —E HIGhest
LOWest

A

PREpared by user-id
L[REVised ——I_ L PASsword is password J

[
»—|
=V

L SAMe AS FILe file-name

LOWest

’— Version is version-number —J
—E HIGhest ————

v

»—

I
|
L COPy —— ALL COMments TYPes —— FROm file file-name
— COMments ———
— DEFinition
— ATTributes
— USErs
— FILes
— RELated FILes
— comment-key
— relational-key

|— Version is version-number
—E HIGhest
LOWest

A

L NEW NAMe is new-file-name

NEXt —|:

|— Version is —[version-number

HIGhes
LOWest

=

v

A

|— NEW Version is —[new-version-number
NEXt —E HIGhest
LOWest

A

v

L file DEScription is description-text _

4-48 CA-IDMS IDD DDDL Reference

4.9 FILE

A

L

L LABels are NULL <« ——
STAndard
NON-standard —
OMItted

A
4

L maximum RECord size is record-size _

A
4

L BLOck size is block-size]

A

L

L RECording MODe is NULT <« —

Ln<cmm

A
v

L RECord DEScriptor is _I: DEFined —————i]—J
NOT DEFined «

' |
|
L_I: INClude « USEr is user-id |
EXClude h L user-specification —J

(for complete user-specification syntax, see USER clause in Chapter 3)

L PUBTic access is _I:_________:I_ for ALL « _
ALLOwed NONe

UPDate —
MODify —
REPTace —
DELete —
DISplay —

\
\/

»—

I

|

L—I: INCTude « RELated FILe is related-file-name
EXClude ——:I—

\ 4

|

\ 4
\4

HIGhest
LOWest

|
L— Version is _{E version-number ————J L— TEXt is user-text ——J

Chapter 4. Entity-Type Syntax 4-49

4.9 FILE

INClude j_:I_ FILe name SYNonym is file-synonym-name

EXCTude

\ 4

A

version-number

L Version is _T:
NEXt

HIGhest Ei:]
LOWest

v

LE INCTude « FILE-TYPE is —— PS
EXClude ——:I_ — IS

— CARD —

— VS
— UM

L— TEXt is user-text ——J

A

A

L[INCTude « VSAM-TYPE is —— KS
EXClude ——:]_ — ES

— RS

L— TEXt is user-text ——J

v

v

EXClude

A

L_I: INClude :_:I_ INPUT-MODULE is user-module

L— TEXt is user-text ——J

v

L_I: INCTude « DEVICE-TYPE is —
EXClude ——:I_ —

L— TEXt is user-text ——J

<« —

»—

L[: INCTude j_:I— class-name is attribute-name

EXClude

L TEXt is user-text —J

<« —

»—

L—[: INCTude « relational-key is file-name
EXClude ——I_

A\

L— Version is —}E

version-number —

HIGhest
LOWest

|
——J L— TEXt is user-text ——J

v

4-50 CA-IDMS IDD DDDL Reference

4.9 FILE

- I

v

DEFinitio
comment-key

. |
|— EDIt —E COMments T&— edit-instruction J— QUIT
n

\4

A\
A

COMments is _I: NUL1
DEFinition comment-text

comment-key

DISPLAY/PUNCH FILE statement (for a single file)

> DISpla FILe name is file-name >
T punen LT —

\4

HIGhest
LOWest

L— Version is _{E version-number ———J

L PREpared by user-id B] |
PASsword is password

T
WITh V ALL |
ALSo wITT_:ﬁ — ALL COMment TYPes ————
WITHOut — ATTributes
— COMments
— DEFinitions
— DETails
— FILes
— HIStory
— NONE
— PROgrams
— RECords
— RELated FILes
— REPorts
— SAMe AS
— SYNonyms
— TRAnsactions
— USErs
USEr DEFINED COMments
—_[: UDCs 1

USEr DEFINED NESts
Luovs ————— T

— WHEre USED
l— TO —E SYSpCh

MODule module-name

HIGhest
LOWest

L— Version is —{E version-number ———J

> | >

|

| LANguage is language I PREpared by user-id []
PASsword is password

Chapter 4. Entity-Type Syntax 4-51

4.9 FILE

L VERB DISplay L AS _I: SYNtax ——:]—J
PUNch COMments
ADD
MODi fy
REPTace
DELete

DISPLAY/PUNCH FILE statement (for multiple files)

»—[DISplay ALL FILes >
PUNch l FIRst B 1 «] |
NEXt entity-count
LASt é
PRIor

A

v

L PREpared by user-id B B |
PASsword is password

A

v

L WHEre conditional-expression _

(for complete conditional-expression syntax, see WHERE clause in Chapter 3)

oy ser « .
L

AREa

A
y

L T0 SYS
ch
T oot

MODule module-name

HIGhest
LOWest

L— Version is —{E version-number ———J

\ 4

v

L LANguage is language I PREpared by user-id [_J|
PASsword is password

L VERB DISplay L AS _I: SYNtax __i]_J
PUNch COMments
ADD
MOD1i fy
REPlace
DELete

A

Parameters

FILe name is file-name
Identifies a new file to be established in the dictionary, or an existing file to be
modified, replaced, deleted, displayed, or punched. File-name must be a 1-
through 32-character alphanumeric value. The file name and version must not
duplicate that of an existing file or file synonym.

4-52 CA-IDMS IDD DDDL Reference

4.9 FILE

NEW NAMe is new-file-name
Specifies a new 1- through 32-character name for the requested file. This clause
changes only the name of the file occurrence; it does not alter or delete previously
defined relationships in which the file participates. Subseguent references to the
file occurrence must specify the new name. If the VERSION clause is not
specified, the version number defaults to the version associated with the original
file name. The new file name and version number must not duplicate that of an
established file or file synonym.

NEW Version is new-version-number/NEXt HIGhest/NEXt LOWest
Specifies a new version number for the named file. The file name and new
version number must not duplicate that of an existing file or file synonym.

LABels are
Designates a label-processing specification for the named file for use by the
IDMSDMLC precompiler during COBOL FD COPY functions. This clause is
used only by CA-CULPRIT.

NULI
Specifies no labeling (the default); NULL produces no COBOL FD COPY
specification.

STAndard
Specifies standard format file labels; STANDARD produces the LABELS ARE
STANDARD COBOL FD COPY specification.

NON-standard
Specifies nonstandard format file labels; NON-STANDARD produces the
LABELS ARE NON-STANDARD COBOL FD COPY specification.

OMItted
Specifies unlabeled files; OMITTED produces the LABELS ARE OMITTED
COBOL FD COPY specification.

maximum RECord size is record-size (used by CULPRIT)
Defines a maximum record size for the named file for use by the IDMSDMLC
precompiler during COBOL FD COPY functions. Record-size must be an integer
in the range 0 through 32,767 and must be equivalent in bytes to the largest record
in the file.

BLOck sizeis block-size
Defines a block size for the file for use by the IDMSDMLC precompiler during
COBOL FD COPY functions. Block-size must be an integer in the range 0
through 32,767 and must represent the number of bytes in each block in the file.
This clause is used only by CA-CULPRIT.

RECording MODe is
Defines a recording mode for the file for use by the IDMSDMLC precompiler
during COBOL FD COPY functions. This clause is used by CA-CULPRIT only.

NULI
Removes an existing RECORDING MODE clause. NULL is the default.

Chapter 4. Entity-Type Syntax 4-53

4.9 FILE

F
Indicates fixed-length records.
U
Indicates undefined recording mode.
\Y,
Indicates variable-length records.
S

Indicates variable-length spanned records.

RECord DEScriptor is
Specifies whether a 4-byte prefix for variable-length files to be processed by
CA-CULPRIT is aready defined in the record or whether CA-CULPRIT must
generate the prefix. This clause is used by CA-CULPRIT only.

DEFined
Specifies that the record descriptor is to be defined in the record description in the
dictionary.

NOT DEFined
Specifies that the record descriptor is not to be defined in the record and must be
added by CA-CULPRIT. NOT DEFINED is the default.

REL ated FlLe is related-file-name
Associates (INCLUDE) the named file with or disassociates (EXCLUDE) it from
a previously defined file. Related-file-name must be a 1- through 32-character
alphanumeric value. If the VERSION clause is not specified, the DDDL compiler
uses the default version number specified in the SET OPTIONS statement. The
file name and version number must reference the primary name of an existing file.

FILe name SYNonym is file-synonym
Associates (INCLUDE) an alternative name with the named file or disassociates
(EXCLUDE) an existing alternative name from the named file. File-synonym is
the 1- through 32-character synonym name; the specified synonym can be
referenced in an IDMSDMLC COBOL FD COPY function. If no version number
isindicated in the FILE NAME SYNONYM clause, yet the FILE NAME clause
includes a version number, the version number of the synonym name defaults to
the version specified in the FILE NAME clause. The concatenation of the
synonym name and version number must not duplicate that of an existing file or
file synonym.
All files have at least one synonym, known as the primary synonym, with the
same name and version as the file itself.

FILE-TYPE is
Associates (INCLUDE) a file-type with or disassociates it from (EXCLUDE) a
file. This clause is used by CA-CULPRIT only.

PS
Specifies a sequentid file as the file type.

IS
Specifies ISAM as the file type.

4-54 CA-IDMS IDD DDDL Reference

4.9 FILE

CARD
Specifies a card file as the file type.

VS
Specifies VSAM as the file type; if VS is specified, VSAM-TY PE (described
below) must also be specified.

UM
Specifies the CA-CULPRIT user module as the file type; if UM is specified,
INPUT-MODULE (described below) must also be specified.

VSAM-TYPE is
Associates (INCLUDE) a VSAM-type with or disassociates (EXCLUDE) it from a
file. This clause is used by CA-CULPRIT only.

KS
Specifies a key-sequenced data set (KSDS) as the VSAM file type.

ES
Specifies an entry-sequenced data set (ESDS) as the VSAM file type.

RS
Specifies a relative-record data set (RRDS) as the VSAM file type.

INPUT-MODULE is user-module
Associates (INCLUDE) or disassociates (EXCLUDE) the name of the
CA-CULPRIT user module as it will appear on a CULPRIT INPUT parameter.
This clause is used by CA-CULPRIT only.

DEVICE-TYPE is 2311/2314/3310/3330/3340/3350/3370/3380/3390/FBA/TAPE
Associates (INCLUDE) a device type with or disassociates (EXCLUDE) it from a
file. This clause is used by CA-CULPRIT, only in VSE/ESA environments.

WITh/ALSo WITh/WITHOut
Includes or excludes the specified options when the named file is displayed or
punched. Detailed information for each DISPLAY/PUNCH option is under 2.4.2,
“SET OPTIONS syntax” on page 2-9. The options that are listed below present
special considerations for this entity type.

DETails
Includes the DESCRIPTION, LABELS, RECORD SIZE, BLOCK SIZE,
RECORDING MODE, and RECORD DESCRIPTOR specifications.

FlLes
Includes the SAME AS and RELATED FILES specifications.

Usage: If you specify REPLACE

If the REPLACE verb is specified, the DDDL compiler initializes to defaults and/or
excludes the following options:

DESCRIPTION
RELATED FILE
LABELS
FILE-TYPE

Chapter 4. Entity-Type Syntax 4-55

4.9 FILE

MAXIMUM RECORD SIZE
VSAM-TYPE

BLOCK SIZE

INPUT-MODULE

RECORDING MODE

DEVICE-TYPE

RECORD DESCRIPTOR

Related attributes

PUBLIC ACCESS
COMMENTS/DEFINITION/comment-key
USER REGISTERED FOR

FILE SYNONYM (unless the named file synonym is related to a record)

The following relationships are not affected:
» Files to which the named file is a related file

® Programs that access the named file

Example: In the following example, the ADD statement defines the file
STOCKFILE and relates it to the attribute STOCK-UPDATE within the class
APPLICATION and to the file CRT-TRANFILE. The MODIFY statement adds the
synonym STK3FILE to the definition.

add file stockfile
bTlock size 510
record size 30
labels standard
recording mode f
application is stock-update
related file is crt-tranfile
text 'receives application output'.

modify file stockfile
file name synonym stk3fil.

4-56 CA-IDMS IDD DDDL Reference

4.10 FILE SYNONYM

4.10 FILE SYNONYM

You can display or punch selected file synonyms using the FILE SYNONYM
statement.

Syntax: DISPLAY/PUNCH FILE SYNONYMS statement

(for a single synonym)

v

»—[DISplay FILe SYNonym file-synonym-name
PUNch ——:I_

v

HIGhest
LOWest

l— Version is —E version-number —J

v

L PREpared by user-id B] |
PASsword is password

' |
> >

I
WITh b ALL
ALSo WITh——‘ NONE ————
WITHOut RECords
REPorts

TRAnsactions —

<
<

L T0 —[SYSpch

MODule module-name

|— Version is version-number ——l
—E HIGhest
LOWest

\ 4
v

[

| LANguage is language I PREpared by user-id [_||
PASsword is password

L VERB DISplay L AS T SYNtax ——:]—J
PUNch COMments
ADD
MODi fy
REPTace
DELete

A

DISPLAY/PUNCH FILE SYNONYMS statement

(for multiple synonyms)

Chapter 4. Entity-Type Syntax 4-57

4.10 FILE SYNONYM

»—[DISp1ay ALL | FILe SYNonyms------=---- —-»>
PUNch FIRst
NEXt L— nt1t -count —J
LASt
PRIor
L PREpared by user-id |

L PASsword is password il

A

(for complete conditional-expression syntax, see WHERE clause in Chapter 3)

L WHEre conditional-expression _

T
BY _I:

SET 1;]—J
AREa

v

\ 4

A

L T0 —T:

SYSpch

MODule module-

name

L— Version is _{E version-number —

HIGhest
LOWest

L LANguage is language 11 PREpared by user-id

[

| PASsword is password]

A

L VERB

DISplay
PUNch
ADD
MODi fy
REPTace
DELete

L AS

L

SYNtax
COMment

T

A

4-58 CA-IDMS IDD DDDL Reference

411 LINE

4.11 LINE

LINE statements are used to document the association between a line and a physical
terminal in a teleprocessing system. A physical terminal is associated with a line by
means of the PHY SICAL-TERMINAL statement, described under 4.18, “PHY SICAL
TERMINAL” on page 4-112, later in this chapter. Optional LINE statement clauses
assign characteristics for use in the DC/UCF system and the Distributed Database
System (CA-IDMS/DDS) environments.

Note: It is recommended that you maintain LINE definitions using the system
generation compiler, not the DDDL compiler. If a system generation
component is processed by the DDDL compiler, only dictionary security is
checked, not system generation security. For more information on using the
system generation compiler, refer to CA-IDMS System Generation.

If the SET OPTIONS statement specifies SECURITY FOR IDMS-DC IS ON, the user
must be assigned the proper authority to issue LINE statements.

Syntax: LINE statement

Chapter 4. Entity-Type Syntax 4-59

4.11 LINE

> ADD LINe name is line-name
MOdi fy
REPTace
DELete

A

v

|— Version is —[version-number
NEXt —E HIGhest
LOWest

A

PREpared by user-id
L[REVised ——I_ L PASsword is password J

A

L line DEScription is description-text _

A

L line TYPe is line-type _

— |
INClude « USEr is user-id
LI: EXClude h L user-specification —J

(for complete user-specification syntax, see USER clause in Chapter 3)

v

]

|— PUBTic access is —L—_|— for ALL <« —
ALLOwed NONe

UPDate —
MODify —
REPTace —
DELete —
DISplay —

\

T

|

LI: INClude « within SYStem system-name
EXCTude j—

\ 4

|— Version is version-number —J
—E HIGhest
LOWest

—
INClude « class-name is attribute-name
LE EXClude ——l—

|— TEXt is user-text —J

v

4-60 CA-IDMS IDD DDDL Reference

411 LINE

A

o
—
w
Q

o
putty
[97]

o

v

L DC option is T ENAbled «

' I

. |
L— EDIt COMments \— edit-instruction —l— QUIT
_{E DEFinition :E}
mment-ke

Co -Key

v

\4

COMments is _I: NUL1
DEFinition comment-text
comment-key

DISPLAY/PUNCH LINE statement (for a single linge)

Chapter 4. Entity-Type Syntax 4-61

4.11 LINE

»»—I: DISplay LINe name is line-name
PUNch)

v

L Version is —{E version-number]

HIGhest
LOWest

v

L PREpared by user-id B

PASsword is password]

v

«——

WITh
ALSo WITh :ﬁ —
WITHOut —

ALL |
ALL COMment TYPes
ATTributes
COMments
DEFinitions
DETails
HIStory
NONE
SYStems a
SUBSYstems
USErs

T HSEP DEFINED COMments T

A

DCs

|— TO —|: SYSpCh

MODule module-name

HIGhest

L Version is —{E version-number]
LOWest

A\

L LANguage is language I PREpared by user-id

A

| PASsword is password —J

v

L VERB DISplay
PUNch
ADD
MODi fy
REPTlace
DELete

|— AS —|: SYNtax j—‘
COMments

DISPLAY/PUNCH LINE statement (for multiple lines)

4-62 CA-IDMS IDD DDDL Reference

411 LINE

\4

LINes

>>—I: DISp]a ALL
PUNch FIRst
NEXt :Ej L— nt1t -count —J

LASt
PRIor

L PREpared by user-id B N |
PASsword is password

< >
<

L WHEre conditional-expression _

(for complete conditional-expression syntax, see WHERE clause in Chapter 3)
LBY—[SET<:|’J
AREa

L TO SYS
ch
T vorr

MODule module-name

v

\ 4

A

HIGhest
LOWest

L— Version is _{E version-number —

> | >

|

! LANguage is language It PREpared by user-id [5
PASsword is password

L VERB DISplay L AS T SYNtax ——:]—J
PUNch COMments
ADD
MODi fy
REPTace
DELete
Parameters:

LINe name is line-name
Identifies either a new line to be established in the dictionary or an existing line to
be modified, replaced, deleted, displayed, or punched. Line-name must be a 1-
through 8-character alphanumeric value.

LINe TYPeis line-type
Specifies a generic line type. Line-type must be one of the following values:

Chapter 4. Entity-Type Syntax 4-63

4.11 LINE

ASYNC BSC2
BSC3 CONSOLE
DCAMLIN DDS
INOUTL L3270B
L3280B S3270Q
SYSOUTL TCAMLIN
UCFLINE VTAMLIN
VTAMLU

The LINE TYPE specification is documentational only, unless the line definition
is to be copied into a DC/UCF system using the system generation compiler
COPY facility.

within SY Stem system-name
Associates (INCLUDE) the named line with or disassociates (EXCLUDE) it from
a system. Systemname must be the 1- through 32-character name of an existing
system. The WITHIN SYSTEM specification is documentational only, unless the
system generation compiler COPY facility is to be used to copy the line definition
from an IDD-built system. When the COPY facility is not used, al line/system
relationships are established and maintained by the system generation compiler.

DC option is
Specifies whether the named line is to be enabled or disabled automatically when
the system starts up.

The DC OPTION specification is documentational only, unless the line definition
is to be copied into a DC/UCF system using the system generation compiler
COPY facility.

ENAbled
Automatically enables the line at system startup. ENABLED is the defaullt.

DI Sabled
Disables the line until it is explicitly enabled by means of an operator command
during system execution.

WITh/ALSo WITh/WITHOut
Includes or excludes the specified options when the named line is displayed or
punched. Detailed information for each DISPLAY/PUNCH option is under 2.4.2,
“SET OPTIONS syntax” on page 2-9. The option that is listed below presents
specia considerations for this entity type.

DETails
Includes the DESCRIPTION, LINE TYPE, and DC OPTION specifications.

4-64 CA-IDMS IDD DDDL Reference

411 LINE

Usage: If you specify REPLACE

If you specify REPLACE, the DDDL compiler initializes to defaults and/or excludes
the following options:

DESCRIPTION

LINE TYPE

USER REGISTERED FOR

PUBLIC ACCESS

WITHIN SYSTEM (if built by the DDDL compiler)
COMMENTS/DEFINITION/comment-key

DC OPTION

Related attributes

Line-system relationships established by the system generation compiler are not
affected.

Example: In the following example, the ADD statement registers the line ROE3
within the system INVENTORY and describes the physical terminals within the line
group as 3270s. The MODIFY statement removes the line from the INVENTORY
system so that the line can be accessed using the system generation compiler COPY
facility.

add Tine roe3
prepared by dba password is 'ice 9'
definition is 'line between inventory central and oebost'
- 'terminals are remote 3270s using btam'
line type is bsc3
within system inventory.

modify Tine roe3
revised by dba
exclude system inventory.

Chapter 4. Entity-Type Syntax 4-65

4.12 LOAD MODULE

4.12 LOAD MODULE

The LOAD MODULE statement is used to submit a relocatable deck to be stored as a
load module in the dictionary load area (DDLDCLOD). Load modules are particularly
useful in the CA-IDMS/DB Distributed Database System environment because they
can be moved among the dictionaries used by the multiple central versions that
participate in the DDS system. CA-IDMS/DB subschemas, DC/UCF maps and map
editing tables, database name tables, and CA-ADS processes can be stored in the
dictionary as load modules.

If the SET OPTIONS statement specifies SECURITY FOR LOAD MODULE IS ON,
the user must be assigned the proper authority to issue LOAD MODULE statements.

Syntax: LOAD MODULE statement

> ADD LOAd MODule name is load-module-name >
FE MODi fy El
DELete
|— Version is version-number
EL—J_[HIGhest
NEXt LOWest

<

L module TYPe is SUBSChema « 1
MAP
map HELp
TABle
ads DIAlog
MAInline ADS DIAlog —
RCM

v

v

PREpared by user-id
L[REVised j
|_ AMOde is —E ANY:I—J
24
|_ RMOde is —E ANY:I—J
24

<
<

’— PASsword is password —|

v

v

L e B
0BJect DECk FOLlows —{— object-deck-item ODEND
DISPLAY LOAD MODULE statement (for a single load module)

4-66 CA-IDMS IDD DDDL Reference

4.12 LOAD MODULE

\4

>>—I: DISplay LOAd MODule name is load-module-name
PUNch T

v

<
<

]

HIGhest
LOWest

L Version is —{E version-number —

\4

<
<

L PREpared by user-id B] |
PASsword is password

A\
A\
A

T
|
' |
WITh v ALL
ALSo WITh :J DETails —
WITHOut HIStory —

NONe

DISPLAY LOAD MODULE statement (for multiple load modules)

»—— DISplay ALL | LOAd MODules------------- —-
FIRst 1 «
NEXt L entity-count —J
LASt
PRIor
L PREpared by user-id |

L PASsword is password —J

< >
<

L WHEre conditional-expression _

(for complete conditional-expression syntax, see WHERE clause in Chapter 3)

\ 4

<
<

l— T0 —[SYSpCh

MODule module-name

|

HIGhest

L— Version is _{E version-number —
LOWest

> | >

|

! LANguage is language It PREpared by user-id [5
PASsword is password

L VERB DISplay L AS T SYNtax ——:]—J
PUNch COMments
ADD
MODi fy
REPTace
DELete

A

PUNCH LOAD MODULE statement

Chapter 4. Entity-Type Syntax 4-67

4.12 LOAD MODULE

v

»»—— PUNch LOAd MODule name is load-module-name

- >

HIGhest

|— Version is —E version-number —
LOWest

v

L module TYPe is SUBSChema « 1
MAP
map HELp
TABle
ads DIAlog
MAInTine ADS DIAlog —
RCM

v

L PREpared by user-id B] |
PASsword is password

\ 4
A

L WITh SYNtax]

Parameters:

LOAd MODule name is load-module-name
Identifies a new load module to be established in the dictionary, or an existing
load module to be modified, deleted, punched, or displayed. If MODIFY is
specified, the only valid parameters are AMODE and RMODE. |f PUNCH is
specified, the DDDL compiler produces a relocatable deck from the named load
module; that deck can subsequently be link edited and placed in a load
(core-image) library. Load-module-name must be a 1- through 8-character
alphanumeric value.

module TYPe is SUBSChema/M AP/map HEL p/TABIle/ads DIAlog/MAlnline ADS
DIAlog/RCM
Identifies the load module as a subschema, map, map help, table, CA-ADS dialog,
mainline dialog, or relational command module (RCM). With all verbs, you can
use the MODULE TYPE clause as an additional qualifier immediately after the
version clause. If you specify MODULE TYPE as an additiona qualifier, the
compiler makes sure that the load module named in a MODIFY/ALTER or
DELETE/DROP statement is of the same type. The default for this clause is
SUBSCHEMA.

AMOde is
Specifies the named module's addressing mode (for ADD and MODIFY only)

ANY
Indicates that the module is invoked in 31-bit addressing mode. ANY is the
default.

24
Indicates that the module is invoked in 24-bit addressing mode.

If RMODE IS ANY is specified, AMODE must be ANY.

4-68 CA-IDMS IDD DDDL Reference

4.12 LOAD MODULE

RMODe is
Specifies the named modul€'s residency mode (for ADD and MODIFY only)

ANY
Indicates that the module can be loaded above or below the 16-megabyte line.
For DC/UCF systems running in 24-bit mode, modules are loaded below the
16-megabyte lines, regardless of the RMODE specification. ANY is the default.

24
Indicates that the module must be loaded below the 16-megabyte line.

For DC/UCF systems running in 31-bit mode, modules with an RMODE of ANY
are loaded into XA program pools (above the 16-megabyte line); modules with an
RMODE of 24 are loaded into non-XA pools (below the 16-megabyte line).

OBJect DECk FOL lows object-deck-item ODEND
Specifies the object (relocatable) deck to be stored as the load module in the
dictionary (for ADD only). OBJECT DECK FOLLOWS must be coded on the
first line by itself; object-deck-items follow on the second and subsequent lines;
ODEND terminates the object deck and is coded on the last line.

WITh/ALSo WITh/WITHOut
For DISPLAY only, includes the specified options when the named load module is
displayed. For detailed information on each DISPLAY/PUNCH option, see 2.4.2,
“SET OPTIONS syntax” on page 2-9. The options that are listed below present
special considerations for this entity type.

Note: DISPLAY output aways appears as comments, regardless of the default
option in effect.

HIStory
Includes the date and time the load module was created.

DETails
Includes module length, entry point address, number of RLD (relocation directory)
entries, security class, logical deletion flag, and module type (subschema, map,
table, dialog, or mainline dialog).

WITh SYNtax
Punches an object deck accompanied by the ADD LOAD MODULE syntax
(load-module-name, VERSION, PREPARED BY, OBJECT DECK FOLLOWS,
object-deck-items, and ODEND). This option is useful for producing an object
deck that is to be placed in aload area other than the system load library. (Option
is for PUNCH only.)

Usage: Load module considerations

The following considerations apply to load modules:

® Only load modules produced by CA-IDMS compilers can be placed in the
dictionary load area; COBOL and PL/I programs are not eligible.

® |t is recommended that all ADD LOAD MODULE statements be submitted
together in a separate run of the DDDL compiler.

Chapter 4. Entity-Type Syntax 4-69

4.12 LOAD MODULE

» The MODIFY LOAD MODULE statement can be used only with the RMODE
and AMODE clauses; other clauses are not valid when using the MODIFY verb.

Deleting load modules

When you delete a load module, PROG-051 records associated with the load module
are also deleted, providing the PROG-051 records are:

® The same type as the load module (subschema, map, table, dialog, RCM, or map
help)

and

» Not related to any other entity type in the dictionary
Punching a load module

When you punch a load module from the dictionary load area (DDLDCLOD area) into
an object module, the DDDL compiler omits the RMODE/AMODE attributes because
the RMODE/AMODE clause is not acceptable to the linkage editor. If you are
punching the load module to add it to a different dictionary, then you must edit the
punched syntax to include the RMODE/AMODE clause.

Example: The following example illustrates the statements required to define the
load module STATETBL.

add Toad module statetbl
rmode is any
amode is any
module type is table
object deck follows

esd information

txt information ...

r1d information

end
odend.

4-70 CA-IDMS IDD DDDL Reference

4.13 LOGICAL TERMINAL

4.13 LOGICAL TERMINAL

LOGICAL-TERMINAL statements are used to document the logical terminals used in
an online environment and to relate those logical terminals to established systems and
users, as well as to physical terminals. Logical terminals allow application programs
to communicate with DC/UCF systems without specifying physical device identifiers.
At runtime, the terminal user's signon information, the executing task, and dynamic
storage are associated with the logical terminal.

Note: It is recommended that you maintain LOGICAL TERMINAL definitions using
the system generation compiler, not the DDDL compiler. If a system
generation component is processed by the DDDL compiler, only dictionary
security is checked, not system generation security. For more information on
using the system generation compiler, refer to CA-IDMS System Generation.

If the SET OPTIONS statement specifies SECURITY FOR IDMS-DC IS ON, the user
must be assigned the proper authority to issue LOGICAL-TERMINAL statements.

Syntax: LOGICAL-TERMINAL statement

Chapter 4. Entity-Type Syntax 4-71

4.13 LOGICAL TERMINAL

REPTace
DELete

|— Version is version-number
h HIGhest
NEXt LOWest

PREpared by user-id
L[REVised ——I_ L PASsword is password J

> ADD L0Gical-terminal j— name is logical-terminal-name ———»
E MODi fy LTErm

A

A

| -

A
4

L logical-terminal DEScription is description-text _

I >
| >

<« —

L[INClude « USEr is user-id
EXCTude ——I_ L user-specification |

(for complete user-specification syntax, see USER clause in Chapter 3)

v

ALL « —

L PUBTic access is —L—]— for
ALLOwed NONe

UPDate —
MODify —
REPTace —
DELete —
DISplay —

A

\

I—[INClude 1_T within SYStem system-name
EXCTude

L Version is |
version-number -
HIGhest
LOWest

A\
A\

L[PHYsical-terminal]— is physical-terminal-name
PTErm

A\ 4
v

|— Version is version-number —J
—E HIGhest
LOWest

4-72 CA-IDMS IDD DDDL Reference

4.13 LOGICAL TERMINAL

> | >
INClude « class-name is attribute-name |
EXCTude ——,_

|— TEXt is user-text J

[
»—|
»— >

L DC option is

——[PHYsical-terminal]- is terminal-name []
PTErm Version is version-number
— AUTotask code is —[NULT « a

task-name
ENAbled «
—[DISabled _

— PRINter class is ADD « ___I_E — printer-class 1 T
—[DELete ALL)

— NOPrinter «
PRIority is
—[termma] priority-number]

»—| |

I __|
|~ EDIt COMments V\— edit-instruction 1 QuUIT
E DEFinition %
comment-ke

comment-Key

\4

»—

I

|
COMments is —[NUL1
DEFinition comment-text

comment-key

DISPLAY/PUNCH LOGICAL-TERMINAL statement

(for a single terminal)

Chapter 4. Entity-Type Syntax 4-73

4.13 LOGICAL TERMINAL

»—[DISplay LOGical-terminal j— name is logical-terminal-name ——»
PUNch “TL LTErm

v

HIGhest

L Version is —E version-number]
LOWest

v

L PREpared by user-id B] |
PASsword is password

WITh ALL |

ALSo NITH — ALL COMment TYPes

WITHOut — ATTRibutes

— COMments

— DEFinitions

— DETails

— HIStory

— NONe

— PHYsical-terminals
SYStems a
SUBSYstems

— USErs

—[HSE;‘ DEFINED COMments T

«——

L T0 SYS
ch
T oot

MODule module-name

|— Version is version-number —J
—E HIGhest
LOWest

> | >

L LANguage is language I PREpared by user-id [J|
PASsword is password

A

|— VERB DISplay |— AS —E SYNtax jJ
PUNch COMments
ADD
MOD1i fy
REPlace
DELete

DISPLAY/PUNCH LOGICAL-TERMINAL statement

(for multiple terminals)

A

4-74 CA-IDMS IDD DDDL Reference

4.13 LOGICAL TERMINAL

»—— DISplay ALL I L_ LOGical-terminals
FIRst L_ 1 « _J LTErms
NEXt entity-count
LASt 4
PRIor

A
4

L PREpared by user-id B N |
PASsword is password

A
4

L WHEre conditional-expression _

(for complete conditional-expression syntax, see WHERE clause in Chapter 3)

L BY

v

SET «
_I: AREa

\ 4

A

L TO SYS
ch
T vorr

MODule module-name

HIGhest
LOWest

L— Version is _{E version-number ———J

> | >

|

! LANguage is language It PREpared by user-id [5
PASsword is password

A

L VERB DISplay L AS T SYNtax ——:]—J
PUNch COMments
ADD
MODi fy
REPTace
DELete
Parameters

L OGical-terminal name is logical-terminal-name
Identifies a new logical terminal to be established in the dictionary or an existing
logical terminal to be modified, replaced, deleted, displayed, or punched. LTErm
is a synonym for LOGical-terminal. Logical-terminal-name must be a 1- through
8-character aphanumeric value.

within SY Stem system-name
Associates the named logical terminal with a system. System-name must be the 1-
through 32-character name of an existing system. The WITHIN SYSTEM
specification is documentational only, unless the system generation compiler
COPY facility is to be used to copy logical-terminal definitions from an IDD-built
system. When the COPY facility is not used, all logical-terminal/system
relationships are established and maintained by the system generation compiler.

PHY sical-terminal is physical-terminal-name
Associates a physical terminal with or disassociates it from the
logical-terminal/system relationship. The named physical terminal must be defined
within the named system. In the DC/UCF environment, this parameter is

Chapter 4. Entity-Type Syntax 4-75

4.13 LOGICAL TERMINAL

documentational only; the logical-to-physical terminal association is established by
means of the DC OPTION clause (described below) or directly through the system
generation compiler.

DC option is
Assigns logical functions to the logical-terminal occurrence and, in DC/UCF
environments, associates the logical terminal with a physical terminal.

PHY sical-terminal is physical-terminal-name
Specifies the physical terminal with which the named logical terminal is to be
associated. Note that the VERSION clause keywords HIGHEST and LOWEST
are not valid.

Although a logical terminal can be associated with only one physical termina at a
time, the specified association can be changed by means of an operator command
during system execution.

AUTotask code is NUL I/task-name
Specifies whether a task is to be executed automatically when the logical terminal
is enabled. NULL (the default) specifies that no task is initiated when the
terminal is enabled. Task-name specifies that the named task will be initiated
automatically when the terminal is enabled. Task-name must be a 1- through
8-character alphanumeric value.

If the named task is defined with the INPUT option, task execution is deferred
until the terminal operator enters the requested data (see 4.27, “TASK” on
page 4-228).

Note: Note that AUTOTASK CODE cannot be specified if PRINTER CLASS is
specified.
ENADbled/DI Sabled
Specifies whether the logical terminal is to be enabled or disabled automatically
when the DC/UCF system starts up. ENABLED (the default) automatically
enables the terminal at system startup. DISABLED disables the terminal until it is
enabled explicitly by an operator command during system execution.

PRINter class is ADD/DEL ete printer-class-number/ALL
Specifies one or more print classes. Printer-class-number must be an integer in
the range 1 through 64. ALL assigns all printer classes (1 through 64) to the
logical terminal.

The optional ADD/DELETE parameter adds or deletes the specified printer
classes;, ADD is the default. Specify the PRINTER CLASS option only if the
associated physical termina is a 3280 or similar device that has print capabilities.

Note: PRINTER CLASS cannot be specified if AUTOTASK CODE is specified.

NOPrinter
Specifies that the logical terminal is not associated with a physical print device.

PRI ority is O/terminal-priority-number
Specifies the dispatching priority for the named logical terminal. The DC/UCF
system uses the specified value in combination with task and user priorities to

4-76 CA-IDMS IDD DDDL Reference

4.13 LOGICAL TERMINAL

determine the dispatching priority of specific requests. Terminal-priority-number
must be an integer in the range 0 through 255; the default for ADD is 0.

UPPer/LOWer
Specifies the treatment of lowercase input from the logical terminal. UPPER (the
default) trandates al lowercase input to uppercase. LOWER transmits all
lowercase input without translation.

WITh/ALSo WITh/WITHOut (DISPLAY/PUNCH only)
Includes or excludes the specified options when the named logica termina is
displayed or punched. Detailed information for each DISPLAY/PUNCH option is
under 2.4.2, “SET OPTIONS syntax” on page 2-9. The option that is listed
below presents special considerations for this entity type.

DETails
Includes the DESCRIPTION and DC OPTIONS specifications.

Usage: If you specify REPLACE

If you specify REPLACE, the DDDL compiler initializes to defaults and/or excludes
the following options:

DESCRIPTION

USER REGISTERED FOR

PUBLIC ACCESS
COMMENTS/DEFINITION/comment-key
WITHIN SYSTEM

DC OPTION

Related attributes

Logical-terminal/system relationships established by the system generation compiler are
not affected.

Example: In the following example, the ADD statement registers logica terminal
LTM26 within the system INVENTORY and associates LTM26 with physical terminal
TMO026. The MODIFY statement removes the logical terminal from the INVENTORY
system and defines it as a component of a DC/UCF system.

add logical-terminal 1tm26
prepared by dba password is 'ice 9'
within system inventory
physical-terminal tm026.

modify logical-terminal 1tm26
revised by dba password is 'ice 9'
exclude within system inventory
dc option is physical-terminal tm026
dc option is autotask code is reser9
dc option is enabled
dc option is priority is 15.

Chapter 4. Entity-Type Syntax 4-77

4.14 MAP

4.14 MAP

MAP statements are used to document the maps (or tables) used by teleprocessing
monitors to correlate data fields within records with locations on panels (screens)
defined for use with 3270-type terminals. Optional MAP statement clauses relate
maps to users, systems, and panels and accommodate attribute/entity relationships.
MAP statements can document existing map definitions or anticipated map
requirements.

If the SET OPTIONS statement specifies SECURITY FOR IDMS-DC IS ON, the user
must be assigned the proper authority to issue MAP statements.

Syntax: MAP statement

4-78 CA-IDMS IDD DDDL Reference

4.14 MAP

\4

ADD MAP name is map-name
MODi fy
REPTace
DELete

|— Version is version-number
EL—J_E HIGhest
NEXt LOWest

l— within PANel panel-name

A
v

A
4

HIGhest

L Version is —E version-number —J
LOWest

A
\4

PREpared by user-id
L[REVised j— L PASsword is password i

L NEW NAMe is new-map-name |_
Version is new-version-number
L
NEXt —[HIGhest

LOWest
l— NEW Version is —E new-version-number
NEXt —[HIGhest
LOWest

L map DEScription is description-text _

A
\4

A
v

A
v

|

|
>
l—[INCTude « USEr is user-id |
EXClude h L user-specification l

(for complete user-specification syntax, see USER clause in Chapter 3)

v

\4

ALL « —J

L PUBTic access is ﬁ for
ALLOwed NONe

UPDate —
MODify —
REPTace —
DELete —
DISplay —

v

INClude 4_—[within PANel panel-name
EXClude

HIGhest
LOWest

T
|- Version is Eversion-number -J

Chapter 4. Entity-Type Syntax 4-79

4.14 MAP

INClude j_:I_ within SYStem system-name
EXCTude

\ 4

HIGhest

L Version is —{E version-number ———J L TEXt is user-text ——J
LOWest

T
—
INClude « class-name is attribute-name |
EXClude ——:]_

L— TEXt is user-text —J

A

INClude « MODule is module-name
EXClude ——:]_ L LANguage is _I: HELp

TABle

> |

HIGhest

L Version is —{E version-number 1L TEXt is user-text i
LOWest

\ 4

L_I: INClude « TABle table-name
EXClude ——:I_

v

A\

|
L— Version is _{E version-number ———J L— TEXt is user-text —J

HIGhest
LOWest

»—
>

DEFinitio
comment-key

]
. ey
EDIt —{E COMments \— edit-instruction QUIT
n :;]

<« —

»—

v

A

»

COMments is —E NUL1
DEFinition comment-text
comment-key

DISPLAY/PUNCH MAP statement (for a single map)

4-80 CA-IDMS IDD DDDL Reference

4.14 MAP

\4

>>—I: DISplay MAP name is map-name
PUNch T

<
<

v

HIGhest

L Version is —{E version-number ———J
LOWest

\4

<
<

L PREpared by user-id B] |
PASsword is password

WITh ALL |
ALSo wITE_:i — ALL COMment TYPes

WITHOut — ATTRibutes
— COMments
— DEFinitions
— DETails
— HIStory
— MODules

-——

— PROgrams
— RECords
SYStems
—_[: SUBSYstems —J
— TABLes
— USErs

USEr DEFINED COMment
L UDC;\ e I

A
A\

l— T0 —[SYSpCh

MODule module-name

L— Version is version-number ———J
_{E HIGhest
LOWest

L | >

|

|
L PASsword is password —J

L VERB DISplay L AS _I: SYNtax ——:j—J
PUNch COMments
ADD
MODi fy
REPlace
DELete

| LANguage is language I PREpared by user-id

A
\4
A

DISPLAY/PUNCH MAP statement (for multiple maps)

Chapter 4. Entity-Type Syntax 4-81

4.14 MAP

»—— DISplay ALL | MAPs >
FIRst 1 «
NEXt L— entity-count —J
LASt
PRIor

A
4

| -

L PREpared by user-id T H
PASsword is password

A
4

L WHEre conditional-expression _

(for complete conditional-expression syntax, see WHERE clause in Chapter 3)

v

L— BY SET «
L
AREa

A
\ 4

|_ TO —[SYSpch

MODuTe module-name

HIGhest
LOWest

L— Version is _{E version-number ———J

> | >

L LANguage is language 11 PREpared by user-id [_JI
PASsword is password

A
A

L VERB DISplay L AS T SYNtax ——:]—J
PUNch COMments
ADD
MODi fy
REPTace
DELete

Parameters

MAP name is map-name within PANel panel-name
Identifies a new map to be established in the dictionary or an existing map to be
modified, replaced, deleted, displayed, or punched. Map-name must be a 1-
through 8-character alphanumeric value. For ADD operations, the MAP NAME
clause must be further qualified by the WITHIN PANEL clause. Panel-name
must reference an existing panel (see 4.17, “PANEL (SCREEN)” on page 4-107).

NEW NAMe is new-map-name
Specifies a new name for the requested map. This clause changes only the name
of the map occurrence; it does not ater or delete previously defined relationships
in which the map participates. Subsequent references to the map occurrence must
specify the new name. The concatenation of the new map name and version
number must not duplicate that of any other map in the dictionary. If no version
is specified, the version associated with the original name is used.

Note: The NEW NAME option cannot be used with maps created using the
DC/UCF mapping compiler.

4-82 CA-IDMS IDD DDDL Reference

4.14 MAP

NEW Version is new-version-number/NEXt HIGhest/NEXt L OWest
Specifies a new version number for the named map. The map name and new
version number must not duplicate that of an established map.

Note: The NEW VERSION option cannot be used with maps created using the
DC/UCF mapping compiler.

within PANel panel-name
Associates (INCLUDE) the named map with or disassociates (EXCLUDE) it from
a panel. Panel-name must be the 1- through 32-character name of an existing
panel. The named map can be associated with only one panel. In DC/UCF
environments, the mapping compiler establishes and maintains map/panel
relationships directly and requires that each map be associated with a panel.

within SY Stem system-name
Associates (INCLUDE) the map with or disassociates (EXCLUDE) it from a
system. System-name must be the 1- through 32-character name of an existing
system. The WITHIN SYSTEM clause is documentational only.

MODule is module-name language is HEL p/TABIle
Associates (INCLUDE) the named map with or disassociates (EXCLUDE) it from
amodule. The language of the module must be HELP or TABLE. Module-name
must be the 1- through 32-character name of an existing module.

TABIe table-name
Associates (INCLUDE) the named map with or disassociates (EXCLUDE) it from
atable. Table-name must be the 1- through 8-character name of an existing table.

WITh/ALSo WITh/WITHOut
Includes or excludes the specified options when the named map is displayed or
punched. Detailed information for each DISPLAY/PUNCH option is under 2.4.2,
“SET OPTIONS syntax” on page 2-9. The option that is listed below presents
special considerations for this entity type.

DETails
Includes the DESCRIPTION clause.

Usage: If you specify REPLACE

If you specify REPLACE, the DDDL compiler initializes to defaults and/or excludes
the following options:

DESCRIPTION
COMMENTS/DEFINITION/comment-key

WITHIN SYSTEM (if built by the DDDL compiler)
USER REGISTERED FOR

PUBLIC ACCESS

Related attributes

The following relationships are not affected:
® Panels to which the named map is related
» Map fields to which the named map is related

Chapter 4. Entity-Type Syntax 4-83

4.14 MAP

® Records to which the named map is related
® Programs to which the named map is related

Cross-referencing between maps and tables and modules

Cross-referencing is automatic; however, you can add cross-referencing to document
IDD maps (which are not accessed by the mapping facility). Before using the
MODULE and TABLE clauses, make sure that modules have a language of HELP or
TABLE.

Example: The following is an example of cross-referencing. The ADD statement
defines the map SHIPINF within the panel SH5 and within the system INVENTORY.
The MODIFY statement removes SHIPINF from the system INVENTORY and
associates it with the system SHIPINV.

add map name is shipinf within panel sh5
prepared by dba password is 'ice 9'
map description 'shipping information query output'
within system inventory.

modify map shipinf
revised by dba password is 'ice 9'
exclude within system inventory
within system shipinv.

4-84 CA-IDMS IDD DDDL Reference

4.15 MESSAGE

4.15 MESSAGE

The MESSAGE statement maintains in the dictionary informational messages that are
used by CA-IDMS software. If the SET OPTIONS statement specifies SECURITY
FOR IDMS-DC IS ON, the user must be assigned the proper authority to issue
MESSAGE statements.

Syntax: MESSAGE statement

ADD MESsage name is message-name
MODi fy
REPTace
DELete

PREpared by user-id
L[REVised __I— L PASsword is password i

v

| >

A

l— NEW NAMe is new-message-name —l

A
v

L message SEVerity is severity-level _

»—

I
|
l—[INCTude « text LINe is line-number
EXClude j—

\ 4

\
A

—Jlf— DESTination is LOG |
OPErator —
ID ——
TERminal —
NUL1
— MESsage is message-text

|
—i— DESCription is os-description-code 1

' [
—i— ROUte is os-routing-code

— SEVerity is severity-level
— ID is destination-id

, |

A\

v

DEFinitio
comment-key

L iy
EDIt —E COMments T&— edit-instruction QUIT
n

—

|—E COMments is —[NULT

DEFinition comment-text
comment-key

DISPLAY/PUNCH MESSAGE statement (for a single message)

Chapter 4. Entity-Type Syntax 4-85

4.15 MESSAGE

»»—I: DISp]aX_:]— MESsage name is message-name

PUNch

v

L PREpared by user-id

L PASsword is password _

v

[
WITh v
ALSo WITh j
WITHOut

ALL |
ALL COMment TYPEs
COMments
DEFinitions
DETails
HIStory
NONe
USEr DEFINED COMments
UbCs I

v

A

L
T0

SYSpch

\ 4

MODuTe module-name

L— Version is version-number ———J
_{E HIGhest
LOWest

A\

L LANguage is language 11 PREpared by user-id

A

I

| PASsword is password —J

v

L VERB

DISplay
PUNch
ADD
MODi fy
REPlace
DELete

L AS —E SYNtax j—J
COMments

DISPLAY/PUNCH MESSAGE statement (for multiple messages)

A

4-86 CA-IDMS IDD DDDL Reference

4.15 MESSAGE

»—— DISplay ALL | MESsages

\4

LASt

FIRst 1 «
NEXt j |— entity-count —J
PRIor

A

L PREpared by user-id L_] |
PASsword is password

A

L WHEre conditional-expression _

(for complete conditional-expression syntax, see WHERE clause in Chapter 3)

<
<

\ 4

L TO SYS
ch
T vorr

MODule module-name

HIGhest
LOWest

L— Version is _{E version-number ———J

| -

|

! LANguage is language It PREpared by user-id [5
PASsword is password

A

L VERB DISplay L AS T SYNtax ——:]—J
PUNch COMments
ADD
MODi fy
REPTace
DELete
Parameters:

M ESsage name is message-name

Identifies a new message to be established in the dictionary or an existing message
to be modified, replaced, deleted, displayed, or punched. Message-name must be a
1- through 8-character identifier. When used in conjunction with the
CA-IDMS/DC WRITE LOG statement, the identifier consists of the literal DC
followed by six digits.

NEW NAMe is new-message-name

Specifies a new name for the requested message. This clause changes only the
name of the message occurrence; it does not alter or delete previously defined
relationships in which this message participates. Subsequent references to the
message must specify the new name.

message SEVerity is severity-level

Associates a severity level with al text lines in the named message. The specified
severity level directs the DC/UCF system to take a specific action automatically
when a program issues the associated message in response to an error condition.
Severity-level must be a 1-digit unsigned integer in the range 0 through 9; the
default is 0. See the table under Usage for a list of valid DC/UCF severity levels
and the resulting actions.

Chapter 4. Entity-Type Syntax 4-87

4.15 MESSAGE

text LINe is line-number

Identifies the relative position of the text line within the named message.
Line-number must be an integer in the range 1 through 2,147,483,647 and must be
unique within the message. Because contiguous line numbers need not be
assigned, the user can configure messages in which the same line of text always
appears last and into which additional text lines can be inserted.

DEStination is LOG/OPErator/ID/TERminal/NULI

Associates up to four destinations with the named text line or removes a
previously specified destination (option for DC/UCF system messages only).
Valid destinations are as follows:

® LOG — the system log
. OPERATOR — the console operator

8 |D — any termina known to the DC/UCF system, other than the terminal
associated with the user program; the ID IS parameter (described below)
assigns the actual termina. To direct the message to multiple terminals,
repeat the LINE IS clause with appropriate DESTINATION, MESSAGE, and
ID options for each terminal.

. TERMINAL — the terminal associated with the user program

» NULL — no destination; this option removes a previously defined
destination.

M ESsage is message-text

Specifies the text for the named line. Message-text is restricted to 132 characters
and comprises user-supplied literals and operands. |f message-text must be
continued, the continuation character (-) must appear as the first character in the
second and subsequent input lines. |If message-text includes embedded blanks or
delimiters, it must be enclosed in site-standard quote characters. Operands that
will receive replacement values at runtime can appear anywhere within the
message text but must be preceded by an ampersand (&). The relative positions
of the replacement values correspond to the values of the symbolic operands in the
message text; for example, the first value replaces &01 and the second replaces
&02.

DEScription is os-description-code

Associates one or more operator-message descriptor codes with the message text
line (option is for OS systems only). Os-description-code must be an unsigned
integer in the range 1 through 16 and must be a valid OS descriptor code in the
supervisor services and macro instructions manual for the applicable OS system.
A list of codes, separated by commas and/or blanks, can be constructed to any
length (for example, 1 2 9 3 5).

ROUte is os-routing-code

Associates one or more operator-message routing codes with the message text line
(option is for OS systems only). The specified value supplies the ROUTCDE
value for WTO macros used by the DC/UCF system. If this option is used, the
system administrator should ensure that the values of os-routing-code correspond
to the values specified during the OS system generation. Os-routing-code must be

4-88 CA-IDMS IDD DDDL Reference

4.15 MESSAGE

an unsigned integer in the range 1 through 16. A list of codes, separated by
commas and/or blanks, can be constructed to any length (for example, 1 2 9 3 5).

SEVerity is severity-level
Associates a severity level with the named text line. This specification is
documentational only.

ID is destination-id
Identifies the terminal to which the message is to be sent.

WITh/ALSo WITh/WITHOut
Includes or excludes the specified options when the named message is displayed
or punched. Detailed information for each DISPLAY/PUNCH option is under
2.4.2, “SET OPTIONS syntax” on page 2-9. The option that is listed below
presents specia considerations for this entity type.

DETails
Includes all TEXT LINE clause specifications.

Usage: DC/UCF system message severity levels

Severity level M eaning

Return to caller

Snap task and return to caller

Snap system and return to caller
Snap task and abend task

Snap system and abend task
Abend task

Not assigned

Not assigned

Snap system and abend system

Ol JN|OOJ O |~ W[DN|FL|O

Abend system

M essage occurrence structure

Message occurrences have the following structure:

® |dentifier — A unique 8-character identifier. DC/UCF messages contain the
prefix DC in addition to a 6-digit identifier in the range 000001 through 999999,

m Message text lines — Individua lines of literals and operands. Each line is
identified by a unique line number. Operands are preceded by an ampersand (&)
and receive replacement values when the message is issued at runtime.

Operands that furnish system-defined replacement values can be placed in
messages issued from online tasks. The user can include the following operands

Chapter 4. Entity-Type Syntax 4-89

4.15 MESSAGE

in messages issued from online tasks. The run-time system automatically
substitutes the indicated data:

Operand Replacement value

&$0 Task ID (from the TCETSKID field of the task control element)

&$1 Time of day

&$2 Date (ddd.yy)

&$3 IDMSDC system version (from the CSADCVID field of the
common system area)

&$4 Current task code (from the task control element)

&$5 Current program (from the TCECPRGM field of the task control
element)

&$6 User ID (from the TCESONRC field of the task control element)

» User-defined destination — A code associated with each message text line.
Codes are available to direct messages to the console operator, the system log, or
to specific terminals.

Note: Destinations for messages used by CA-ADS/Batch are documentational
only.

® Operating system and DC/UCF system information — A description code,
route code, and/or a severity level associated with each line of text, according to
user-established requirements.

»» Detailed information about using messages in DC/UCF application programs
appears in the CA-IDMS Navigational DML Programming.

If you specify REPLACE

If you specify REPLACE, the DDDL compiler initializes to defaults or excludes the
following options:

MESSAGE SEVERITY
TEXT LINE
COMMENTS/DEFINITION/comment-key

Example: In the following example, the ADD statements define two DC/UCF
messages; hote that message text can be continued between input lines if necessary.

4-90 CA-IDMS IDD DDDL Reference

4.15 MESSAGE

add message dc317017
text line 1
destination is operator
severity is 1
message is
'end of file encountered before end of idms'
-'statement.’'.

add message dc317020
text Tine 1
destination is operator
severity is 0
message is
"duplicate parameter within this idms statement'.

Chapter 4. Entity-Type Syntax 4-91

4.16 MODULE (PROCESS/QFILE/TABLE)

4.16 MODULE (PROCESS/QFILE/TABLE)

MODULE statements are used to define source code for modules, CA-ADS processes,
and CA-OLQ dfiles and to document edit and code tables. Modules can be standard
modules or sequences of DDDL commands, signon profiles, or system command lists.
Tables are used by the CA-IDMS Mapping Facility for automatic editing and error
handling. Optional MODULE statement clauses relate modules, processes, dfiles, and
tables to users, systems, and other modules; establish attribute/entity relationships; and
maintain documentational entries.

If the SET OPTIONS statement specifies SECURITY FOR IDD IS ON, the user must
be assigned the proper authority to issue MODULE statements.

Syntax: MODULE/PROCESS/QFILE/TABLE statement

4-92 CA-IDMS IDD DDDL Reference

4.16 MODULE (PROCESS/QFILE/TABLE)

ADD

MODi fy
REPTace
DELete

MODule name is module-name
PROCess

QFIle

TABTe

\4

A

L— Version i

S version-number
Em—[HIGhest
NEXt LOWest

v

A

L LANguage

A

is language

L TEXt is user-text _

L[: PREpared
REVised

A

__l_ by user-id

L PASsword is password —J

\

L SAMe as MODule module-name
PROCess
QFIle
TABle

\4

[

L— Version

A

is version-number —
AE HIGhest ———

LOWest

L LANguage is language]

L COPy —

\ 4

ALL COMments TYPes
COMments
DEFinition
ATTributes
SOUrce text
SYStems
USERS
MODULes
PROcesses
QFILES
TABles

— comment-key
— relational-key

—— FROm

MODule
PROCess
QFIle
TABle--

module-name

[

L— Version i

S version-number 1L LANguage is language]
_{E HIGhest

LOWest

\4

Chapter 4. Entity-Type Syntax 4-93

4.16 MODULE (PROCESS/QFILE/TABLE)

A

v

NEXt
—[LOWest

A

L NEW NAMe is new-module-name B
Version is —[version-number
HIGhest

|— NEW Version is —[new-version-number
NEXt —E HIGhest
LOWest

A

L NEW LANguage is language C]
TEXt is user-text

v

A

DEScription is description-text _

module
process
gfile
table

v

I
—
L[INCTude « USEr is user-id |
EXCTude h L user-specification |

(for complete user-specification syntax, see USER clause in Chapter 3)

<
<

v

L PUBTic access is —L—_I— for ALL « 1
ALLOwed NONe

UPDate —
MODify —
REPTace —
DELete —
DISplay —

A

L[INCTude « WIThin SYStem —_|— system-name
EXClude ——I_ —[SUBSYstem

\ 4

|
|— Version is version-number —J |— TEXt is user-text J
—E HIGhest
LOWest

\ 4

—
LI: INClude « MODE is attribute-name
EXCTude 1L class-name —J

4-94 CA-IDMS IDD DDDL Reference

4.16 MODULE (PROCESS/QFILE/TABLE)

| >

\

| "

L— TEXt is user-text ——J

. .,

T
— >
L_I: INClude « LANguage is language |

EXClude ——:I_ L— TEXt is user-text —J

»—

I

|

INCTude « relational-key is module-name
L[EXCTude ——I—

\ 4

\
4

HIGhest

L Version is —{E version-number L LANguage is language i
LOWest

| ,

\

i >
L— TEXt is user-text —J

»—

T
»—| >
L_I: INCTude « MAP map-name

EXClude —_I_

|
|

\ 4
v

HIGhest

L— Version is _{E version-number ———J L— TEXt is user-text —J
LOWest

I

»—
>

v

DEFinitio
comment-key

J
. |
L— EDIt —{E COMments ——:EJ———l— edit-instruction L QUIT
n

T
»—l »
L—{E COMments is —I: NUL1
DEFinition comment-text
comment-key
L—EE MODule SOUrce follows B B
PROCess E} WITh COMments
QFIle

Chapter 4. Entity-Type Syntax 4-95

4.16 MODULE (PROCESS/QFILE/TABLE)

>
>

' |
—\|— source-statement —l— MSEND

<

v

PROCes
QFIle

']
[— EDIt _{E MODU]E_:E]_ SOUrce —{— edit-instruction 1 QUIT
s

v

A

L TYPe is EDIt T VALid «]—J
—|: INValid

CODe

A

L SEArch is _I: LINear « |

BINary
|— ON —E ENCode :,—J
DECode

v

A

TABle —:]— DATa is ALPhanumeric «
ENCode —E NUMERIC

> |

L DECimal position is T 0 «]

decimal-position-indicator

A

L TABTe is —I: UNSorteE_:_j——|
SORted

v

A

L DUPlicates are _I: ALLowed « ——:]—J
NOT ALLowed

v

—
L[INClude VALues I are LIST

EXClude is |
(4— value
_{ L THRu value i
encode-value decode-value

NULT

]

v

L— GENerate —J

DISPLAY/PUNCH MODULE/PROCESSQFILE/TABLE statement

(for a single module/process/dfile/table)

A\
A

4-96 CA-IDMS IDD DDDL Reference

4.16 MODULE (PROCESS/QFILE/TABLE)

\4

»—E DISplay MODule name is module-name
PUNch PROCess
TR T
TABTe

|— Version is <E version-number ——J

A
4

HIGhest
LOWest

A
4

L LANguage is language _

A
4

L PREpared by user-id B] |
PASsword is password

T
WITh V ALL |
ALSo wnﬂ — ALL COMment TYPes
WITHOut — ATTributes

— COMments
— DEFinitions
— DETails
— HIStory
— MAPs

MODuTes
L ONLy]

— MODule SOUrce —L—_I—
ONLy

— NONe
— PROCesses
— PROgrams
— QFIles
— SAMe AS
SYStems —_li
SUBSYstems

— TABles
— USErs

—[USEr DEFINED COMments —
UDCs

USEr DEFINED NESts
Luvs ————— T

— WHEre USED

- L TO SYS
ch
T oo

MODule module-name

HIGhest
LOWest

l— Version is —E version-number ——l

Chapter 4. Entity-Type Syntax 4-97

4.16 MODULE (PROCESS/QFILE/TABLE)

A\

>
| >

L LANguage is language 11 PREpared by user-id [N
PASsword is password

|— VERB DISplay |— AS —E SYNtax j—‘
PUNch COMments
ADD
MOD1i fy
REPlace
DELete

A
A\
A

DISPLAY/PUNCH MODUL E/PROCESS/QFILE/TABLE statement

(for multiple modules/pr ocesses/dfiles/tables)

>—|: DISp]ay ALL MODules ———»
PUNch FIRst |_] E PROCesses —
NEXt nt1t -count QFIles
LASt q TABles ——
PRIor

A
v

L PREpared by user-id r H |
PASsword is password

A
v

L WHEre conditional-expression _

(for complete conditional-expression syntax, see WHERE clause in Chapter 3)

v

|— BY SET «
L
AREa

A
\ 4

|_ TO —|: SYSpch

MODuTe module-name

HIGhest

LOWest
> || >
|

|— Version is ~E version-number ——J

| LANguage is language I PREpared by user-id [B
PASsword is password

L VERB DISplay L AS —E SYNtax j—‘
PUNch COMments
ADD
MOD1i fy
REPlace
DELete

A

Parameters:

MODule/PROCess/QFIle/TABIe name is module-name
Identifies a new module, process, dfile, or table to be established in the dictionary,
or an existing occurrence to be modified, replaced, deleted, displayed, or punched.

4-98 CA-IDMS IDD DDDL Reference

4.16 MODULE (PROCESS/QFILE/TABLE)

For modules, processes, and dfiles, module-name must be a 1- through
32-character alphanumeric value; for tables, module-name must be a 1- through
8-character value. The specified name must not duplicate the name of an existing
program, map, subschema, or CA-ADS dialog.

If aversion of HIGHEST or LOWEST is specified (or defaulted to), the module
name must be qualified with a language if the module is associated with a
language. If the module name and version number do not uniquely identify a
module, it must be qualified with a language.

L ANguage is language
Qualifies the named module with a language; if used, the LANGUAGE clause
must be coded directly after the name and version number. Language must be a
1- to 40-character language name previously established as an attribute within the
LANGUAGE class. The LANGUAGE specification uniquely identifies two
modules with the same name and version and is used by the DML precompilers
when modules are used in programs. For command lists, acceptable languages are
DC and OCF.

SAMe as M ODule/PROCess/QFIle/TABIe module-name
Copies all entries associated with the named module except the name,
LANGUAGE, WITHIN MODULE, and WITHIN SYSTEM specifications. The
language of the module/process/dfile/table must match the language of the
module/process/dfile/table it is to be made the SAME AS.

COPy entity-option FROm entity-type-name entity-occurrence-name
Copies selected options from an entity-occurrence definition and merges the
copied options into this definition. The language of the module that options are
being copied from must match the language of this module.

NEW NAMe is new-module-name
Specifies a new name for the requested module. This clause changes only the
name of the module; it does not alter or delete any previously defined
relationships in which the module participates. Subsequent references to the
module must specify the new name. New-module-name must be a 1- through
32-character value (or 1- through 8-character value in the case of a TABLE). The
combination of the new module name, version number, and language must not
duplicate that of an established module occurrence.

NEW Version is new-version-number/NEXt HIGhest/NEXt L OWest
Specifies a new version number for the named module. The combination of the
module name, new version number, and language qualification must not duplicate
that of an existing module.

NEW LANguage is language
Associates a new language with the module. Language is a 1- to 40-character
language name previously established as an attribute in the LANGUAGE class.
This clause must be used with the verb MODIFY .

The combined module name, version number, and modified language qualification
must not duplicate that of an existing module. If the module has been qualified
by a language, subsequent references to the module must specify the new
language.

Chapter 4. Entity-Type Syntax 4-99

4.16 MODULE (PROCESS/QFILE/TABLE)

within SY Stem/SUBSY stem system-name
Associates (INCLUDE) the named module with or disassociates (EXCLUDE) it
from a system or subsystem. System-name must reference an existing system or
subsystem.

L ANguage is language
Associates (INCLUDE) or disassociates (EXCLUDE) a language qualification.
The user can change the language qualification of a module by referencing the
module using the LANGUAGE clause (described above), then by altering the
language qualification with the INCLUDE/EXCLUDE LANGUAGE clause. The
combination of the module name, version number, and modified language
qualification must not duplicate that of an existing module. If the module has
been qualified with a language, subsequent references to the module must specify
the new language.

Note: The keyword INCLUDE or EXCLUDE must be present to distinguish this
use of the LANGUAGE IS clause from the LANGUAGE clause used for
module qualification (described previoudly in this list of parameters).

relational-key is module-name
Associates (INCLUDE) the module with or disassociates (EXCLUDE) it from
another module by means of the named relational key. If the modules being
related have the same name and version but different languages or if the related
module has a version of HIGHEST or LOWEST and is qualified by language, the
LANGUAGE parameter must be specified. See 3.6.1, “Relationa keys’ on
page 3-34 for a complete description of defining and using relational keys.

MAP is map-name
Associates (INCLUDE) the module with or disassociates (EXCLUDE) it from a
map. Map-name must refer to an existing map. Only a module with a language
of HELP or TABLE may be associated with a MAP.

MODule/PROCess/QFlle SOUr ce follows source-statement M SEND
Specifies the source code to be associated with the named module, process, or
dfile. Each source statement must be specified in 80-character format. DML
commands coded as module source will be intercepted by the DML precompilers
and trandated into CALL statements when the module is copied.
COPY/INCLUDE requests will also be executed when the module is copied. The
MODULE/PROCESS/QFILE SOURCE FOLLOWS statement must be coded by
itself on the first ling; the source statements are coded on second and subsequent
lines; the keyword MSEND, required to terminate the source statements, must be
the first entry on the last line.

Note: The MODULE/PROCESS/QFILE SOURCE FOLLOWS clause is not valid
for tables.

If you specify WITH COMMENTS, any source statement identified as a comment
line (*+, --, or * in columns 1 and 2) is saved as part of module source. If you
previously saved a module with comments and you redisplay the module to
replace the source text, you must respecify WITH COMMENTS when you save
the module.

4-100 CA-IDMS IDD DDDL Reference

4.16 MODULE (PROCESS/QFILE/TABLE)

TYPeis
Specifies the table type (for the TABLE entity type only). This clause is required
for ADD operations.

EDIt
Defines a table that provides a list of values or ranges of values to be checked in
a data field.

VALid/INValid
Specifies whether the list contains valid or invalid values, VALID is the default.

CODe
Defines a table that translates internal codes in a record to external report values
(decoding) or maps external values back to internal record codes (encoding).

SEArch is
Specifies the method by which the table is to be searched (TABLE entity only).

LI Near
Starts the search at the beginning of the table and proceeds line by line until the
specified value is found. LINEAR is the default.

BINary
Starts the search in the middle the table and halves the table each time a
comparison is made until the specified value is found. Edit tables to be searched
by the binary method can include only single values.

ON ENCode/DECode
Specifies whether the binary search is to be performed on encoded or decoded
table values (option for code tables only). The default is ENCODE.

TABIe/ENCode DATa is AL Phanumeric/NUMERI ¢
Specifies whether the values in the table are aphanumeric or numeric;
ALPHANUMERIC is the default (option is for the TABLE entity only).

DECimal position is decimal-position-indicator
Specifies the position of the decimal point (NUMERIC option only). Note that
this is an assumed decimal position; no decimal point appears in the values.

TABleis
Specifies whether the table is to be maintained in the dictionary as a sorted table
(TABLE entity type only).

UNSorted
Sorts table values at runtime in the order in which they are placed in the
dictionary. UNSORTED is the default.

Note: A binary searched table can be stored with the UNSORTED attribute;
however, the table will be sorted automatically when it is generated.

SORted
Sorts table values aphabetically or numerically as they are added to the table.

Chapter 4. Entity-Type Syntax 4-101

4.16 MODULE (PROCESS/QFILE/TABLE)

DUPlicates are ALL owed/NOT ALLowed
Specifies whether duplicate values can be included in sorted tables (TABLE entity
type only). ALLOWED is the default. Note that DUPLICATES ARE NOT
ALLOWED must be specified for binary searched tables.

VALues are
Specifies whether table values are to be listed, inserted, or removed (TABLE
entity type only).

LIST
Lists the table values or pairs of values (code tables only) stored in the dictionary.

value THRu value
Inserts single values, ranges of values, combinations of single values and ranges,
or null values in the edit table. Value must be a 1- through 34-character value and
must be enclosed in parentheses.

encode-value decode-value
Specifies pairs of values to be inserted in the code table. Encode-value must a 1-
through 34-character value; decode-value must be a 1- through 62-character value.
The specified values must be enclosed in parentheses.

NULI
Removes all values from the table.

GENerate
Causes a load module containing al the values in the table to be placed in the
dictionary load area (TABLE entity type only). The generated load module has
the same name and version number as the named table.

WITh/ALSo WITh/WITHOut
Includes or excludes the specified options when the module, process, dfile, or
table is displayed or punched. Detailed information for each DISPLAY/PUNCH
option is under 2.4.2, “SET OPTIONS syntax” on page 2-9. The options that are
listed below present special considerations for this entity type.

DETails
Includes either the DESCRIPTION clause for modules, processes, and dfiles or
table data for tables.

MAPs
Includes cross-referencing information.

WITh MODule SOUrce
Displays/punches the MODULE statement syntax, the source code associated with
the module, and any other DISPLAY options.

WITh MODule SOUrce ONLY
Displays/punches only the source code associated with the module; does not
display the surrounding ADD MODULE statement (ADD MODULE NAME IS
module-name ... MSEND).

Usage: MODULE statement considerations

The following considerations apply to the MODULE statement:

4-102 CA-IDMS IDD DDDL Reference

4.16 MODULE (PROCESS/QFILE/TABLE)

® The user can choose to add processes, dfiles, and tables by using the MODULE
statement or a DDDL statement that specifically names the entity (that is, a
PROCESS statement, QFILE statement, and TABLE statement).

»» For additional information about statements for dfiles, processes, and tables,
see 4.21, “QFILE” on page 4-148, 4.19, “PROCESS’ on page 4-120, and 4.26,
“TABLE” on page 4-216, later in this chapter.

. The reserved words MODULE, PROCESS, QFILE, and TABLE are
interchangeable within MODULE statement clauses, unless otherwise noted. In
the following discussion, the term module applies to processes, dfiles, and tables,
unless otherwise noted.

m Qfile occurrences are stored as specialy identified module records in the
dictionary and are automatically associated with the LANGUAGE class through
the OLQ attribute.

® Processes are stored as specially identified module records in the dictionary and
are automatically associated with the LANGUAGE class through the PROCESS
attribute.

» Tables defined by means of the TABLE statement are referred to as stand-alone
tables. The RECORD ELEMENT substatement (described under 4.23, “RECORD
(REPORT/TRANSACTION)” on page 4-163 later in this chapter) is used to
define built-in tables. For a description of stand-alone and built-in tables, refer to
CA-IDMS Mapping Facility. Tables are automatically associated with the
LANGUAGE class through the TABLE attribute.

» DC/UCF command lists, stored as occurrences of the MODULE entity type, must
be assigned a language of DC.

If you specify PROCESS, QFILE, or TABLE

If you specify PROCESS, QFILE, or TABLE, the DDDL compiler supplies the
appropriate language automatically.

If you specify REPLACE

If you specify REPLACE, the DDDL compiler initializes to defaults and/or excludes
the following options:

DESCRIPTION

Related modules

USER REGISTERED FOR

Related attributes

PUBLIC ACCESS

MODULE SOURCE or table data
WITHIN SYSTEM
COMMENTS/DEFINITION/comment-key

The following relationships are not affected:

Chapter 4. Entity-Type Syntax 4-103

4.16 MODULE (PROCESS/QFILE/TABLE)

® Modules to which the named module is a related module
m Users accessing the named module
® Programs using the named module

» LANGUAGE specification
Cross-referencing modules with maps

You can add cross-referencing from a module to any map (maps used by the
CA-IDMS mapping facility or documentational IDD maps). Cross-referencing can
only be established for modules having a language of HELP or TABLE.

You must remove all cross-referencing before you can delete a module.

Examples: The following examples illustrate three forms of the
MODULE/PROCESS/QFILE/TABLE statement. Note that the LANGUAGE class
with MANUAL PLURAL quadlifiers and the MODE class with AUTOMATIC
PLURAL quadlifiers are automatically defined during IDD installation and that the
DML precompilers inspect entries within entity occurrences that specify the MODE
and LANGUAGE classes when processing IDMS COPY statements.

The following statements add the module ACCOUNTING-STATISTICS, assigning it a
language of COBOL and relating it to the attribute BATCH by means of the
predefined class MODE and to the system STANDARDS, and modify the module
source, inserting line number 305 and comment text.

add module accounting-statistics

language is cobol

mode is batch

within system standards

module source follows

accounting-statistics.

accept db-statistics from idms-statistics.
display ' program name' program-name.
display '# database requests' calls-to-idms.
display '# pages read' pages-read.
display '# cpu time' system-time.
display '# elapsed time' wait-time.
display '# pages written' pages-written.
display '# pages requested' pages-requested.
display '# records requested' lines-requested.
display '# record current' recs-current.

msend.

modify module accounting-statistics
edit module source

insert 305

display 'job acctg info' acct-info.
cend

quit

comments 'module for displaying statistics'

4-104 CA-IDMS IDD DDDL Reference

4.16 MODULE (PROCESS/QFILE/TABLE)

The following statements add the process GET-A-CUSTOMER to the dictionary and
modify the process UPDATE-A-CUSTOMER; note that the language qualification for
GET-A-CUSTOMER is automatically supplied.

add process get-a-customer
module source follows
ready.
obtain calc customer.
if db-rec-not-found
then do
display message
text is 'customer does not exist -- will be added'.
end.
else do
display message
text is 'customer exists -- will be updated'.
end.
msend.

modify process update-a-customer
module source follows
ready usage-mode is update.
obtain calc customer.
if db-rec-not-found
then do
store customer.
display message
text 'new customer has been added'.
end.
else do
modify customer.
display message
text is 'customer has been updated'.
end.
msend.

The following statements add the tables MONTHTBL and DECODMTH.
MONTHTBL is an edit table that contains the valid values 1 through 12 for the
months of the year; DECODMTH is a code table that relates the names of the months
to the 2-digit month codes used in the database. DECODMTH is defined by means of
the keyword MODULE qualified by a LANGUAGE clause.

Chapter 4. Entity-Type Syntax 4-105

4.16 MODULE (PROCESS/QFILE/TABLE)

add table name is monthtbl
table description is 'valid months'
type is edit
search is linear
table data is alphanumeric
table is unsorted
values are (01 thru 12)

add module name is decodmth version is 1

language is table

table description is 'month code convert'

type is code

search is linear

encode data is alphanumeric

table is unsorted

duplicates are allowed

values are (01 jan 02 feb 03 mar 04 apr
05 may 06 jun 06 june 07 jul 07 july
08 aug 09 sep 10 oct 11 nov 12 dec
not found other)

The following statements add the modules MISPROFILE and JIMC-CLIST.
MISPROFILE is a signon profile that contains three commands. JMC-CLIST isa
command list that can be invoked at runtime. Command lists and signon profiles are
identified by the LANGUAGE IS DC clause.

add module misprofile version 1
language is dc
module source follows
dcuf set dbnode system82
dcuf set dbname misdata
dcuf set print class 3
msend.

add module jmc-clist.

language is dc

module source follows
demt display time
dcmt display active tasks
demt display active storage
dcuf show users all

msend.

4-106 CA-IDMS IDD DDDL Reference

4.17 PANEL (SCREEN)

4.17 PANEL (SCREEN)

PANEL statements associate documentational entries and users with maps that are used
in the 3270-type terminal environment. The keywords PANEL and SCREEN are
synonymous; all screens are reported as panels, regardless of the DDDL syntax used to
establish and/or maintain the occurrences. Optional clauses relate panels to established
users and accommodate attribute/entity relationships. The MAP statement is used to
associate established panels with maps; see 4.14, “MAP” on page 4-78 earlier in this
chapter for further details. When a panel is deleted, all maps associated with it are
also deleted. Panel occurrences can document either existing panel definitions or
anticipated panel reguirements.

If the SET OPTIONS statement specifies SECURITY FOR IDMS-DC IS ON, the user
must be assigned the proper authority to issue PANEL statements.

Syntax: PANEL (SCREEN) statement

Chapter 4. Entity-Type Syntax 4-107

4.17 PANEL (SCREEN)

ADD PANel —:]— name is panel-name >
MODi fy SCReen
REPTace
DELete
L— Version is version-number
L NEXt _ |: HIGhest;I
LOWest

A\

PREpared by user-id
L[: REVised —:]_ L PASsword is password i

v

A

L NEW NAMe is new-panel-name L_
Version is _I: version-number
NEXt

HIGhest
LOWest

v

A

L— NEW Version is _T: version-number

NEXt
HIGhest
LOWest

A

DEScription is description-text _
panel
screen

v

T
—
INClude « USEr is user-id
EXCTude ——:I_

L user-specification |

(for complete user-specification syntax, see USER clause in Chapter 3)

ALL « —

L PUBTic access is _I:_________:]_ for
ALLOwed NONe

UPDate —
MODify —
REPTace —
DELete —
DISplay —

v

I

INClude :_]— class-name is attribute-name

EXClude L TEXt is user-text —J

4-108 CA-IDMS IDD DDDL Reference

4.17 PANEL (SCREEN)

- I

v

DEFinitio
comment-key

. |
|— EDIt —E COMments T&— edit-instruction J— QUIT
n

\4

COMments is _I: NUL1
DEFinition comment-text

comment-key

DISPLAY/PUNCH PANEL (SCREEN) (for a single panel)

> DISplay PANel I name is panel-name >
L PUNch “TL SCReen

\4

HIGhest
LOWest

L— Version is _{E version-number ————J

L PREpared by user-id B] |
PASsword is password

)

WITh ALL |
ALSo wITT_:ﬁ — ALL COMment TYPes

WITHOut — ATTributes

— COMments
— DEFinitions
— DETails
— HIStory
— MAPs
— NONe
— USErs
——[: USEr DEFINED COMments T

UDCs

-——

A\

L 1o

SYSpch
_I: MODuTe module-name B N
Version is version-number —
—E HIGhest
LOWest

\ 4
v

|
|
|

L PASsword is password il

L VERB DISplay L AS —I: SYNtax ——:]—J
PUNch COMments
ADD
MODi fy
REPTace
DELete

| LANguage is language I PREpared by user-id

A

Chapter 4. Entity-Type Syntax 4-109

4.17 PANEL (SCREEN)

DISPLAY/PUNCH PANEL (SCREEN) (for multiple panels)

»»—— DISplay ALL T PANels B >
FIRst r 1 « a SCReens
NEXt entity-count
LASt ;‘
PRIor

A

v

L PREpared by user-id B B |
PASsword is password

A

v

L WHEre conditional-expression _

(for complete conditional-expression syntax, see WHERE clause in Chapter 3)

oy ser < .
L

AREa

A
y

|— T0 —[SYSpCh

MODule module-name

’— Version is version-number —J
—E HIGhest
LOWest

\ 4
v

L LANguage is language 11 PREpared by user-id [H
PASsword is password

|— VERB DISplay |— AS —E SYNtax j—‘
PUNch COMments
ADD
MOD1i fy
REPTace
DELete

A

Parameters

PANel (SCReen) name is panel-name
Identifies a new panel to be established in the dictionary, or an existing panel to
be modified, replaced, deleted, displayed, or punched. Panel-name must be a 1-
through 32-character alphanumeric value.

NEW NAMe is new-panel-name
Specifies a new name for the requested panel. This clause changes only the name
of the panel occurrence; it does not alter or delete any previously defined
relationships in which the panel participates. Subsequent references to the panel
must specify the new name. New-panel-name must be a 1- through 32-character
value. The concatenation of the new panel name and version number must not
duplicate that of an existing panel.

NEW Version is new-version-number/NEXt HI Ghest/NEXt LOWest
Specifies a new version number for the named panel. The panel name and new
version number must not duplicate that of an existing panel.

4-110 CA-IDMS IDD DDDL Reference

4.17 PANEL (SCREEN)

WITh/ALSo WITh/WITHOut
Includes or excludes the specified options when the panel is displayed or punched.
Detailed information for each DISPLAY/PUNCH option is under 2.4.2, “SET
OPTIONS syntax” on page 2-9. The option that is listed below presents special
considerations for this entity type.

DETails
Includes the DESCRIPTION clause.

Usage: If you specify REPLACE

If you specify REPLACE, the DDDL compiler initializes to defaults and/or excludes
the following options:

DESCRIPTION

USER REGISTERED FOR
COMMENTS/DEFINITION/comment-key
Related attributes

PUBLIC ACCESS

The following relationships are not affected:

» Data fields to which the named pandl is related
® Maps to which the named panel is related

Example: In the following example, the ADD statement defines panel SH5.

add panel name is sh5
panel description is 'common shipping queries'.

Chapter 4. Entity-Type Syntax 4-111

4.18 PHYSICAL TERMINAL

4.18 PHYSICAL TERMINAL

PHY SICAL-TERMINAL statements document the physical CRT, TTY, and printer
devices in a teleprocessing system. In the DC/UCF environment, physical terminals
are associated with logical terminas. In CA-IDMS/DB Distributed Database System
environments, DDS physical terminals are associated with DDS lines (refer to
CA-IDMSDDS Design and Operations).

Note: It is recommended that you maintain PHY SICAL TERMINAL definitions
using the system generation compiler, not the DDDL compiler. If a system
generation component is processed by the DDDL compiler, only dictionary
security is checked, not system generation security. For more information on
using the system generation compiler, refer to CA-IDMS System Generation.

If the SET OPTIONS statement specifies SECURITY FOR IDMS-DC IS ON, the user
must be assigned the proper authority to issue PHY SICAL-TERMINAL statements.

Syntax: PHYSICAL-TERMINAL statement

4-112 CA-IDMS IDD DDDL Reference

4.18 PHYSICAL TERMINAL

ADD PHYsical-terminal j_ name is physical-terminal-name —
E MODi fy PTErm

REPTace
DELete
|— Version is version-number
L NEXt _ t HIGhestj
LOWest

A
v

|

L[PREpared by user-id
REVised ——I— L PASsword is password J

A
v

L physical-terminal DEScription is description-text _

A
4

L DEVice TYPe is physical-device-type]

A

|— MAXimum PERmanent ERRors is —E 3 « J |
line-error-count
o - .
INClude « USEr is user-id
EXClude —_I— L user-specification —l

(for complete user-specification syntax, see USER clause in Chapter 3)

<
<

v

ALL « —

L PUBTic access is —’ﬁ— for
ALLOwed NONe

UPDate —
MODify —
REPTace —
DELete —
DISplay —

INClude <_T within SYStem system-name []
EXClude - Version is T version-number -
-[HIGhest

LOWest

Chapter 4. Entity-Type Syntax 4-113

4.18 PHYSICAL TERMINAL

|— LINe is line-name 0 o
Version is version-number —

—E HIGhest

LOWest

\ 4
-——

INClude H— class-name is attribute-name

EXClude L TEXt is user-text —J

| DC option is LINe is line-name B a
Version is version-number
PRInter class is printer-class

ENAbTed «
DISabled J

»—
>

DEFinitio
comment-key

!
' |
\— EDIt —E COMments T\L— edit-instruction 1 QUIT
n

v

I

|

COMments is _I: NUL1

DEFinition comment-text
comment-key

DISPLAY/PUNCH PHYSICAL-TERMINAL (for a single terminal)

A

4-114 CA-IDMS IDD DDDL Reference

4.18 PHYSICAL TERMINAL

»—E DISplay PHYsical-terminal j_ name is physical-terminal-name —»
PUNch “TL PTErm

A

v

L Version is version-number —J
—E HIGhest
LOWest

A
\4

L PREpared by user-id B] |
PASsword is password

WITh ALL |
ALSo wITh;{ — ALL COMment TYPes
WITHOut — ATTributes
— COMments
— DEFinitions
— DETails
— HIStory
— LINes
— NONe
SYStems
SUBSYstems —l
— USErs
—[Hggg DEFINED COMments T

-——

L TO SYS
ch
T wooh

MODule module-name

l— Version is version-number ——l
—E HIGhest
LOWest

> | >

|

| LANguage 1is language I PREpared by user-id [_ll
PASsword is password

L VERB DISplay L AS _I: SYNtax ——:j—J
PUNch COMments
ADD
MODi fy
REPlace
DELete

DISPLAY/PUNCH PHYSICAL-TERMINAL (for multiple terminals)

A

A

Chapter 4. Entity-Type Syntax 4-115

4.18 PHYSICAL TERMINAL

»—— DISplay ALL T PHYsical-terminals :]——v
FIRst 1 « _J PTErms
NEXt entity-count
LASt
PRIor

A
4

| -

L PREpared by user-id T H
PASsword is password

A
4

L WHEre conditional-expression _

(for complete conditional-expression syntax, see WHERE clause in Chapter 3)

v

L— BY SET «
L
AREa

\ 4

A

|_ TO —[SYSpch

MODuTe module-name

HIGhest
LOWest

L— Version is _{E version-number ———J

> | >

[

L LANguage is language 11 PREpared by user-id []
PASsword is password

A

L VERB DISplay L AS T SYNtax ——:]—J
PUNch COMments
ADD
MODi fy
REPTace
DELete
Parameters

PHY sical-terminal nhame is physical-terminal-name
Identifies a new physical terminal to be established in the dictionary, or an
existing physical terminal to be modified, replaced, deleted, displayed, or punched.
PTErm is a synonym for physical-terminal. Physical-terminal-name must be a 1-
through 8-character aphanumeric value.

DEVice TYPe is physical-device-type
Specifies the device type of the named physical terminal. The specified device
type must be a valid device for the line type defined for the line with which the
named physical terminal is associated. Valid values are listed under Usage.

MAXimum PERmanent ERRors is 3/line-error-count
Specifies the number of retries performed after a terminal 1/O error before the
teleprocessing monitor will disable the physical terminal. Line-error-count must
be an integer in the range 0 through 255; the default for ADD is 3.

4-116 CA-IDMS IDD DDDL Reference

4.18 PHYSICAL TERMINAL

within SY Stem system-name
Associates the named physical terminal with the specified system. System-name
must be the 1- to 32-character name of an existing system. One physical terminal
can be associated with multiple systems. The WITHIN SYSTEM specification is
documentational only, unless the system generation compiler COPY facility is to
be used to copy physical-terminal definitions from an IDD-built system. When
the COPY facility is not used, all functional physical-terminal/system relationships
are established and maintained by the system generation compiler.

LINe s line-name
Associates an existing line with the physical-terminal/system relationship. A
physical-terminal/system relationship can be associated with only one line. In the
DC/UCF environment, the LINE parameter is documentational. The functional
physical-terminal/system relationship is established by means of the DC OPTION
clause (described below) or directly through the system generation compiler.

DC option is
Assigns options to the named physical-termina definition for use with DC/UCF
systems.

LINe is line-name
Associates a line with the named physical terminal. Note that an explicit version
number must be specified; the keywords NEXT HIGHEST and NEXT LOWEST
are not valid.

PRInter classis printer-class
Assigns a printer class to the physical terminal. Printer-class must identify a
printer class defined in the LOGICAL-TERMINAL statement and must be an
integer in the range 1 through 64. Omit this specification if the physical terminal
itself is a printer device such as a 3284.

ENAbled
Automatically enables the termina at system startup. ENABLED is the default.

Dl Sabled
Disables the termina until it is enabled explicitly by an operator command during
system execution.

WITh/ALSo WITh/WITHOut
Includes or excludes the specified options when the named physical termina is
displayed or punched. Detailed information for each DISPLAY/PUNCH option is
under 2.4.2, “SET OPTIONS syntax” on page 2-9. The option that is listed
below presents specia considerations for this entity type.

DETails
Includes the DESCRIPTION, DC OPTION, DEVICE TYPE, and MAXIMUM
PERMANENT ERRORS specifications.

Usage: Valid device and line types

Chapter 4. Entity-Type Syntax 4-117

4.18 PHYSICAL TERMINAL

Line type Device type

ASYNC CRT/ASR33/2741/RO33

BSC2 R3275S/R3741S/R3780S

BSC3 R3275/R3277/R3278/R3279/R3284
R3286/R3287/R3288/R3289/R3741
R3780

CONSOLE OPERATOR

DCAMLIN D9750/D8160/D9003/D8121/D8122
D3277

DDS SVCI/CTC/BSC/VTAM/DCAM

INOUTL INOUTT

L3270B L3277/L3278/L3279

VTAMLIN V3277/V3278/V3279/V3284/V3286
V3287/V3288/V3289

L3280B L 3284/L.3286/L.3287/.3288/L. 3289

SYSOUTL SYSOUTT

S3270Q S3277/S3278/S3279

TCAMLIN TCAMTRM

UCFLINE UCFTERM

VTAMLU L U/3600L U/3600PL/3614/LU62

If you specify REPLACE

If you specify REPLACE, the DDDL compiler initializes to defaults and/or excludes
the following options:

DESCRIPTION

DEVICE TYPE

MAXIMUM PERMANENT ERRORS
USER REGISTERED FOR
COMMENTS/DEFINITION/comment-key
PUBLIC ACCESS

WITHIN SYSTEM

DC OPTION

Related attributes

Physical-terminal/system relationships established by means of the system generation
compiler are not affected.

Examples: The following ADD statement defines the physical terminal TM026
within the teleprocessing system INVENTORY ; the DEVICE TYPE and LINE clauses
further identify the physical terminal as a valid device type within the line A103.

4-118 CA-IDMS IDD DDDL Reference

4.18 PHYSICAL TERMINAL

add physical-terminal tm026
physical-terminal description is 'desk 26: assigned dgs'
device type is 13277
within system inventory
line is al03.

The following MODIFY statement disassociates the physical terminal from the system
INVENTORY in preparation for use by a DC/UCF system; the DC OPTION clause
associates the physical termina with the LINE occurrence.

modify physical-terminal tm026

exclude within system inventory
dc option is line is al0@3.

Chapter 4. Entity-Type Syntax 4-119

4.19 PROCESS

4.19 PROCESS

PROCESS statements are used to define source code for CA-ADS processes. Optional
PROCESS statement clauses:

» Relate processes to users, systems, and other processes and modules

» Establish attribute/entity relationships

® Maintain documentational entries
If the SET OPTIONS statement specifies SECURITY FOR IDD IS ON, the user must
be assigned the proper authority to issue PROCESS statements.

Syntax: PROCESS statement

4-120 CA-IDMS IDD DDDL Reference

4.19 PROCESS

\4

ADD PROCess name is process-name
MODi fy
REPTace
DELete

|— Version is version-number

L NEXt _ t HIGhestj

LOWest

A

v

A

v

L : [
LANguage is PROCESS
TEXt is user-text

A

v

PREpared by user-id
L[REVised j— L PASsword is password i

A

\ 4

L SAMe as —[PROCess process-name [
MODule module-name Version is

HIGhest
LOWest

—E version-number]

> | >

L LANguage is PROCESS _

A

>

— COMments

— DEFinition

— ATTributes

— SOUrce text

— SYStems

— USERS

— MODULes

— PROcesses

— comment-key

— relational-key ——

> | >

PROCess

L COPy —— ALL COMments TYPes —— FROm t
MODule

B process-name
j module-name

L Version is version-number 1L LANguage is PROCESS 1
—E HIGhest
LOWest

Chapter 4. Entity-Type Syntax 4-121

4.19 PROCESS

A

v

L NEW NAMe is new-process-name

|— Version is —[version-number
NEXt —E HIGhest
LOWest

A

v

|— NEW Version is —[new-version-number
NEXt —E HIGhest
LOWest

A

L process DEScription is description-text _

»—

v

I
—
L[INCTude « USEr is user-id |
EXCTude h L user-specification]

(for complete user-specification syntax, see USER clause in Chapter 3)

v

L PUBTic access is —L—_I— for ALL « 1
ALLOwed NONe

UPDate —
MODify —
REPTace —
DELete —
DISplay —

A

L[INCTude « WIThin SYStem —_|— system-name
EXClude —_l_ —E SUBSYstem

\ 4

HIGhest

|
L Version is —E version-number 1L TEXt is user-text _
LOWest

INClude « MODE —_[is attribute-name
EXClude - class-name | TEXt is user-text il

<« —

»—

L[INCTude « relational-key is process-name
EXClude ——I_ —E module-name J

4-122 CA-IDMS IDD DDDL Reference

4.19 PROCESS

HIGhest

L Version is —E version-number 1L LANguage is PROCESS _
LOWest

\ 4

\4

L— TEXt is user-text ——J

. I ,

. |
L— EDIt COMments \— edit-instruction —l— QUIT
—E DEFinition ;'
mment-ke

Co -Key

\4

\4

COMments is _I: NUL1
DEFinition comment-text

comment-key

']
MODule _:I_ SOUrce follows —l— source-statement 1 MSEND
_[PROCess

edit-instruction L QuUIT ——J

— EDIt MODule —:]— SOUrce —{—
_I: PROCess

DISPLAY/PUNCH PROCESS statement (for a single process)

Chapter 4. Entity-Type Syntax 4-123

4.19 PROCESS

T

DISpla
PUNch

X_:]_ PROCess name 1is process-name

v

L Version is —E

ver‘sion-number‘-———|
HIGhest
LOWest

v

L PREpared by user-id

L PASsword is password]

T
»—|

v

ALL

WITh v
ALSo WITh j
WITHOut

— ALL COMment TYPes
— ATTributes

— COMments
— DEFinitions
— DETails
— HIStory

MODules
L ONLy —J

— MODule SOUrce
— NONe
— PROCesses
— PROgrams
— QFIles
— SAMe AS
SYStems —_Ji
SUBSYstems
— TABles
— USErs
USEr DEFINED COMments —
_T: UbCs

USEr DEFINED NESts T
L UDNs

— WHEre USED

v

A

\ 4

|_ TO —|: SYSpch

MODuTe module-name

L— Version is _{E version-number ———J

HIGhest
LOWest

| LANguage is language 11 PREpared by user-id

A

| PASsword is password —J

L VERB

DISplay
PUNch
ADD
MODi fy
REPTace
DELete

L as —— svntax
L

COMment

T

DISPLAY/PUNCH PROCESS statement (for multiple processes)

4-124 CA-IDMS IDD DDDL Reference

4.19 PROCESS

»—— DISplay ALL | PROCesses >
FIRst 1 «
NEXt L— entity-count —J
LASt
PRIor

L PREpared by user-id B N |
PASsword is password

< >
<

L WHEre conditional-expression _

(for complete conditional-expression syntax, see WHERE clause in Chapter 3)

v

l—BY—|:SET<
AREa

\ 4

A

L TO SYS
ch
T vorr

MODule module-name

HIGhest
LOWest

L— Version is _{E version-number ———J

> | >

|

! LANguage is language It PREpared by user-id [5
PASsword is password

L VERB DISplay L AS T SYNtax ——:]—J
PUNch COMments
ADD
MODi fy
REPTace
DELete
Parameters

PROCess name is process-name
Identifies a new process to be established in the dictionary or an existing
occurrence to be modified, replaced, deleted, displayed, or punched.
Process-name must be a 1- through 32-character aphanumeric value.

LANguage is PROCESS
Documents the named process with a language; if used, the LANGUAGE clause
must be coded directly after the name and version number. When the PROCESS
statement is specified, the DDDL compiler supplies the appropriate language,
PROCESS, automatically.

SAMe as PROCess/M ODule process-name/module-name
Copies all entries associated with the named process/module except the name and
LANGUAGE specifications. The process‘rmodule to be copied must have the
language PROCESS.

Chapter 4. Entity-Type Syntax 4-125

4.19 PROCESS

COPy entity-option FROm entity-type-name entity-occurrence-name
Copies selected options from an entity-occurrence definition and merges the
copied options into this definition. PROCESSes can copy only from other
modules with a language of PROCESS.

NEW NAMe is new-process-name
Specifies a new name for the requested process. This clause changes only the
name of the process; it does not alter or delete any previously defined
relationships in which the process participates. Subsequent references to the
process must specify the new name. New-process-name must be a 1- through
32-character value. The combination of new process name, version number, and
language must not duplicate that of an established module or process occurrence.

NEW Version is new-version-number/NEXt HIGhest/ NEXt LOWest
Specifies a new version number for the named process. The combination of
module name, new version number, and language qualification must not duplicate
that of an existing module.

within SY Stem/SUBSY stem system-name
Associates (INCLUDE) the named process with or disassociates (EXCLUDE) it
from the specified system or subsystem. System-name must reference an existing
system or subsystem.

relational-key is process-name/module-name
Associates (INCLUDE) the process/module with or disassociates (EXCLUDE) it
from another processmodule by means of the named relational key. If the
modules being related have the same name and version but different languages, or
if the related module has a version of HIGHEST or LOWEST and is qualified by
language, the LANGUAGE parameter must be specified. See 3.6.1, “Relational
keys’ on page 3-34 for a complete description of defining and using relational
keys.

PROCessM ODule SOUr ce follows source statements M SEND
Specifies the source code to be associated with the named process or module.
Each source statement must be specified in 80-character format. CA-ADS process
commands coded as process source are compiled by the CA-ADS dialog generator
when the process is associated with a dialog. INCLUDE requests are executed
when the process/module is compiled. PROCESS/MODULE SOURCE
FOLLOWS must be coded by itself on the first ling; source statements follow on
the second and subsequent lines; the keyword MSEND, required to terminate the
source statements, must be the first entry on the last line.

WITh/ALSo WITh/WITHOut (DISPLAY/PUNCH only)
Includes or excludes the specified options when the process is displayed or
punched. Detailed information for each DISPLAY/PUNCH option is under 2.4.2,
“SET OPTIONS syntax” on page 2-9. The option that is listed below presents
specia considerations for this entity type.

DETails
Includes the DESCRIPTION clause.

4-126 CA-IDMS IDD DDDL Reference

4.19 PROCESS

Usage: PROCESS statement considerations

The following considerations apply to this statement:

® The reserved words PROCESS and MODULE are interchangeable within
PROCESS statement clauses when the MODULE occurrence is qualified with a
language of PROCESS, unless otherwise noted.

® Processes are stored as specially-identified module records in the dictionary and
are automatically associated with the LANGUAGE class through the PROCESS
atribute.

If you specify REPLACE

If you specify REPLACE, the DDDL compiler initializes to defaults and/or excludes
the following options:

DESCRIPTION

USER REGISTERED FOR

PUBLIC ACCESS

WITHIN SYSTEM
COMMENTS/DEFINITION/comment-key
Related processes and modules

Related attributes

PROCESS SOURCE

The following relationships are not affected:
® Processes to which the named process is a related process
®» Modules to which the named process is a related process
m Users accessing the named process
® Programs using the named process
. LANGUAGE specification
Example: The following statements add the process GET-A-CUSTOMER to the

dictionary and modify the process UPDATE-A-CUSTOMER,; the language
qualification for GET-A-CUSTOMER is automatically supplied.

Chapter 4. Entity-Type Syntax 4-127

4.19 PROCESS

add process get-a-customer
module source follows
ready.
obtain calc customer.
if db-rec-not-found
then do
display message
text is 'customer does not exist -- will be added'.
end.
else do
display message
text is 'customer exists -- will be updated'.
end.
msend.

modify process update-a-customer
module source follows
ready usage-mode is update.
obtain calc customer.
if db-rec-not-found
then do
store customer.
display message
text 'new customer has been added'.
end.
else do
modify customer.
display message
text is 'customer has been updated'.
end.
msend.

Note: Note that the LANGUAGE class with MANUAL PLURAL qualifiers and the
MODE class with AUTOMATIC PLURAL qualifiers are automatically defined
during IDD installation. When processing IDMS COPY statements, the DML
precompilers inspect entries within entity occurrences that specify the MODE
and LANGUAGE classes.

4-128 CA-IDMS IDD DDDL Reference

4.20 PROGRAM

4.20 PROGRAM

PROGRAM statements are used to document user application programs and
CA-ADS/Batch transactions.

»> Refer to the CA-ADS User Guide for special considerations that apply to defining
programs for use in the CA-ADS/Batch environment.

Optional PROGRAM clauses:

Relate programs to occurrences of the USER, SYSTEM (SUBSY STEM),
PROGRAM, ENTRY POINT, MODULE, RECORD, and FILE entity types, to
subschemas, and to areas, sets, records, and logical records

Note:

Control the participation of programs in attribute/entity relationships

Maintain documentational entries

Establish CA-IDMS/DC system generation information and CA-IDMS/DB

database statistics

It is recommended that you maintain DC OPTIONS for PROGRAMSs using

the system generation compiler, not the DDDL compiler. If a system
generation component is processed by the DDDL compiler, only dictionary
security is checked, not system generation security. For more information on
using the system generation compiler, see CA-IDMS System Generation.

When a DML program requests activity logging, the DML precompiler updates the
dictionary. The following program options are established and/or updated:

ESTIMATED LINES
FILE

PROGRAM CALLED
AREA

ENTRY POINT
RECORD

MODULE USED
SET

MAP USED
LOGICAL RECORD
RECORDS COPIED

Syntax: PROGRAM statement

Chapter 4. Entity-Type Syntax 4-129

4.20 PROGRAM

ADD PROgram name is program-name
MODi fy
REPTace
DELete

A

v

|— Version is version-number

L NEXt | |: HIGhest;I

LOWest

v

A

PREpared L PASsword is password l

t by user-id
REVised

v

—
L SAMe as PROgram program-name

|— Version is version-number —
—E HIGhest

LOWest

»—\
L COPy —— ALL COMments TYPes —— FROm program program-name
— COMments
— DEFinition
— REMarks
— ATTributes
— USErs
— PROgrams CALled
— PROgrams
— MAPs
— FlILes
— RECords COPied
— ENTRY points
— MODULes
— PROcesses
— comment-key
— relational-key ——

\ 4

A\

HIGhest
LOWest

|— Version is —E version-number —J

v

4-130 CA-IDMS IDD DDDL Reference

4.20 PROGRAM

A
\4

L NEW NAMe is new-program-name L
Version is —I: version-number
NEXt _T: HIGhest

LOWest

L— NEW Version is _T: new-version-number
NEXt —E HIGhest
LOWest

< >
<

L program DEScription is description-text _

A

A

L ESTimated LINes are source-line-count _

! |
’ INClude « USEr is user-id |]
EXClude ——:I_

A\

L user-specification —J

(for complete user-specification syntax, see USER clause in Chapter 3)

v

ALL « —

L PUBTic access is _I:_________:I_ for
ALLOwed NONe

UPDate —
MODify —
REPTace —
DELete —
DISplay —

A\
y

INClude « WIThin SYStem ———:I— system-name
EXClude ——::]_ _I: SUBSYstem

> I ,

HIGhest

|
L Version is —{E version-number ———J L TEXt is user-text _
LOWest

A
A\

T
INCTude « PROgram CALled is (¢ subprogram-name
EXCTude ——:I_

Chapter 4. Entity-Type Syntax 4-131

4.20 PROGRAM

A\
~

HIGhest

|— Version is —E version-number —J |— TEXt is user-text J
LOWest

v

-
L[INCTude 4_]— ENTRy point name is entry-point-name ----------------—-——-
EXClude -

\

\ 4

|— TEXt is user-text J

-——

»—

INCTude « MODule USEd is
L[EXClude ——I_

>
-

\ 4

|
- ({ module-name

HIGhest

| Version is -{ version-number Al LANguage is language]
LOWest

A\

]

|
|— TEXt is user-text J

v

-——

»—

L[INCTude « MAP USEd is map-name
EXClude ——I_

A\

HIGhest

|
|— Version is —E version-number —J |— TEXt is user-text J
LOWest

v

-——

»—

L[INCTude « RECord COPied is record-synonym-name
EXClude ——I_

4-132 CA-IDMS IDD DDDL Reference

4.20 PROGRAM

HIGhest

L Version is —{E version-number L TEXt is user-text _
LOWest

\
V

L— VIEw ID is view-identifier ——J

»—

I
—| >
L_I: INCTude « RECord USEd is record-synonym-name

EXClude —_I_

\
A

HIGhest
LOWest

|— Version is —E version-number —J

|

\ 4
v

|

| REFerenced function-count times 11 MODified function-count times]

»—

I

|

L—I: INCTude « ELement is element-synonym-name
EXClude ——:I—

\ 4

A\
4

OF ELement primary-element-name

HIGhest
LOWest

L— Version is _{E version-number ———J

OF RECord record-name

HIGhest
LOWest

L— Version is —{E version-number ———J

> >

| REFerenced function-count times 11 MODified function-count times —J

Chapter 4. Entity-Type Syntax 4-133

4.20 PROGRAM

»—

\ 4

|
|
INCTude <« FILe is file-name
L[EXClude — INPut —
I-0
OUTput —
EXTend —

\ 4

\ 4

HIGhest

L— Version is —{E version-number ———J L— open-count times ——J
LOWest

\

I— EXTernal NAMe is —E ddname j—‘
file-id

<

v

\ 4

L—[: INClude « SUBSChema is subschema-name
EXClude ——:]_

>
|

—— of SCHema schema-name

HIGhest
LOWest

L— Version is _{E version-number ———J

v

»—

\ 4

|
|
L—[: INClude « AREa area-name
EXClude ——:I_

A\

|

—— OBJect OF FINd B B
FINd KEEp — function-count times
KEEp

OBTain

OBTain KEEp —

— REAdied FOR RETrieval

PROtected RETrieval —

EXClusive RETrieval —

UPDate

PROtected UPDate

EXClusive UPDate

— CURrency ACCepted

4-134 CA-IDMS IDD DDDL Reference

v

4.20 PROGRAM

INClude
EXClude

:_:]_ RECord record-name

I ,

»—

BINd

| >

CONnect
DISconnect
STOre
ERAse

MODi fy
FINd

FINd KEEp
GET

KEEp
OBTain
OBTain KEEp

— CURrency ACCepted —

L function-count times —J

>

[

|
I—[INClude
EXClude

1_:I_ SET set-name

\ 4

IF

v

DISconnect
FINd
FINd KEEp

CURrency ACcepted —

KEEp

OBTain
OBTain KEEp
RETurn

L function-count times]

L_I: INClude
EXClude

\ 4

< LOGical RECord logical-record-name
“TL R

Chapter 4. Entity-Type Syntax 4-135

4.20 PROGRAM

\ 4

- |
OBtain
MODi fy L function-count times —J
STOre
ERAse
COPy

v

—
|T—INC]ude < LANguage is attribute-name B _J
EXClude ——I{ MODE ————::] TEXt is user-text

class-name

»—

I
—\
L—[: INCTude « relational-key is program-name
EXClude ——I_ —E module-name —I

A\

HIGhest
LOWest

L— Version is —{E version-number ————J L— TEXt is user-text ——J

v

<« —

L DC options _T:

are

4-136 CA-IDMS IDD DDDL Reference

4.20 PROGRAM

T

CONcurrent «
—E NONCONcurrent J

— DUMp threshold is T 0 « 1
dump-count

ENAbled «
—E DISabled _
— ERRor threshold is 5 < —_'—

—[error-count

— ISA size is 0 «
—[initial-storage-size —l
— LANguage is COBOL «

ASSembTer —

PL1
PLI
PL/1
PL/I

ADSo —_|—
ADS/0

NONRESident «
—E RESident —

PROtect
—E NONPROtect —l

OVErlayable «
—E NONOVErlayable ——|

PROgram «
— MAP
— map HELp
— SUBSChema
— TABle
— ads DIATog
— ads APPlication —
— ACCess module —
— RCM

[,]

— QUAsireentrant « T
— REEntrant —
NONREEntrant —

REUsable «
—E NONREUsabTe _

SAVearea <«
—E NOSavearea —l

<
<

A\

L SEQUENce from begin-sequence-number i

|

v

A\

|— EDIt

COMments
DEFinition —
REMarks

comment-key —

' |
——{— edit-instruction 1 QUIT

A

COMments

— 1S NUL1
DEFinition — —[comment-text

REMarks
comment-key —

DISPLAY/PUNCH PROGRAM statement (for a single program)

Chapter 4. Entity-Type Syntax 4-137

4.20 PROGRAM

»—[DISplay PROgram name is program-name
PUNch)

v

HIGhest

L Version is —E version-number]
LOWest

v

L PREpared by user-id B]
PASsword is password

v

A
< —

WITh V ALL

ALSo WITh;I — ALL COMment TYPes
WITHOut — AREas

— ATTributes

— COMments
— DEFinitions
— DETails
— ENTRy points
— FILes
— HIStory
— LRs
— MAPs
— MODules
— NONe
— PROgrams
— PROgrams CALled
— RECords
— REMarks
— REPorts
— TASks
— TRAnsactions
— SAMe AS
— SETs
— SUBSChemas ———————
SYStemS —_Ii
SUBSYstems

— USErs
—E USEr DEFINED COMments —
UDCs

USEr DEFINED NESts T
L UDNs

— WHEre USED

4-138 CA-IDMS IDD DDDL Reference

4.20 PROGRAM

A\

A

L 1o

SYSpch
_I: MODuTe module-name B u
Version is version-number —
—E HIGhest
LOWest

v

\ 4

[

| LANguage is language I PREpared by user-id []
PASsword is password

L VERB DISplay L AS T SYNtax ——:]—J
PUNch COMments
ADD
MODi fy
REPTace
DELete

A

A

DISPLAY/PUNCH PROGRAM statement (for multiple programs)

»—— DISplay ALL PROgrams
L—{g FIRst 1 «
NEXt j |— entity-count —J

\4

LASt
PRIor

< >
<

L PREpared by user-id |

L PASsword is password —J

< >
<

L WHEre conditional-expression _

(for complete conditional-expression syntax, see WHERE clause in Chapter 3)
LBY—[SET<;|—‘
AREa

l— T0 —[SYSpCh

MODule module-name

v

A
A\

HIGhest
LOWest

L— Version is _{E version-number ———J

> | >

|

! LANguage is language It PREpared by user-id [5
PASsword is password

L VERB DISplay L AS T SYNtax ——:]—J
PUNch COMments
ADD
MODi fy
REPTace
DELete

A
A

Chapter 4. Entity-Type Syntax 4-139

4.20 PROGRAM

Parameters:

PROgram name is program-name
Identifies a new program to be established in the dictionary, or an existing
program to be modified, replaced, deleted, displayed, or punched. PROGRAM
statements cannot modify, replace, or delete programs that participate in
CA-IDMS/DC or CA-IDMS/UCF systems. Program-name must be a 1- through
8-character alphanumeric value.

SAMe as PROgram program-name
Copies all entries associated with a previously defined program except the name,
WITHIN SYSTEM, SUBSCHEMA, AREA, RECORD, SET, and LOGICAL
RECORD specifications.

NEW NAMe is new-program-name
Specifies a new name for the named program. This clause changes only the name
of the program; it does not alter or delete any relationships in which the program
participates. Subsequent references to the program must specify the new name.

New-program-name must be a 1- through 8-character alphanumeric value. The
new program name and version number must not duplicate that of an existing
program. If aversion number is not specified, the version number associated with
the original name is used. Note that the NEW NAME clause is not valid if the
program participates in a CA-IDMS/DC or CA-IDMS/UCF system or if the
program was created by the system generation compiler.

NEW Version is new-version-number/NEXt HIGhest/NEXt L OWest
Specifies a new version number for the named program. The program name and
new version number must not duplicate that of an existing program.

ESTimated LINes are source-line-count
Documents the estimated number of source lines in the program.
Source-line-count must be an integer in the range 1 through 2,147,483,647.

within SY Stem/SUBSY stem system-name
Associates (INCLUDE) the program with or disassociates (EXCLUDE) it from the
specified system or subsystem. System-name must be the 1- to 32-character name
of an existing system. The WITHIN SYSTEM specification is documentational
only, unless the system generation compiler COPY facility is to be used to copy
program definitions from an IDD-built system. If the COPY facility is not used,
all functional program/system relationships are established and maintained by the
system generation compiler.

PROgram CALled is subprogram-name
Associates (INCLUDE) a subprogram with or disassociates (EXCLUDE) it from
the program. Subprogram-name must reference an existing program and can be
repeated to specify multiple program/subprogram relationships.

ENTRYy point name is entry-point-name
Associates (INCLUDE) an entry point with or disassociates (EXCLUDE) it from
the program. Entry-point-name must be a 1- through 8-character name; a new
entry-point occurrence is created whenever entry-point-name does not identify an
existing entry point in the dictionary.

4-140 CA-IDMS IDD DDDL Reference

4.20 PROGRAM

M ODule USEd is module-name
Defines (INCLUDE) or disassociates (EXCLUDE) a module to be used or copied
by the program. If the named module is not unique in the dictionary, or if it has a
version of HIGHEST or LOWEST and is qualified by a language, the optional
LANGUAGE IS language parameter must be specified; language must reference
an attribute within the LANGUAGE class.

MAP USEd is map-name
Establishes a documentational relationship between the named program and one or
more maps. The CA-ADS compilers build connections between programs and
maps automatically.

RECord COPied is record-synonym
Associates (INCLUDE) or disassociates (EXCLUDE) the name of a record or
record synonym to be copied by the program. Record-synonym must be a 1- to
32-character alphanumeric value that identifies an existing record or record
synonym.

VIEw ID is view-identifier
Quialifies the supplied name with a view identifier. Record views are established
viathe VIEW ID substatement, described under 4.23, “RECORD
(REPORT/TRANSACTION)” on page 4-163 later in this chapter.

RECord USEd is record-synonym
Documents the program'’s use of a record or record synonym by specifying the
number of times the program references and modifies the record. Record-synonym
must be a 1- to 32-character aphanumeric value that identifies an existing record
or record synonym. |If the VERSION IS clause is not specified, the DDDL
compiler searches for the correct record-synonym name in the following order:

1. A record name used in a file opened by the program
2. A record copied by the program

3. Any record synonym with the specified name; that is, the most recently added
record synonym

REFerenced function-count time
Specifies the number of times the named record is referenced by the program.

MODified function-count times
Specifies the number of times the named record is modified by the program.
Function-count must be an integer in the range 0 through 32,767. This clause is
produced by the Dictionary Loader when it processes a COBOL program.

ELement is element-synonym
Documents the program'’s use of an element or element synonym by specifying the
number of times the element is referenced and modified by the program.
Element-synonym must be a 1- through 32-character value that references an
existing element or element synonym.

OF ELement primary-element-name/OF RECord record-name
Qualifies the element-synonym name with a primary element name or record name
or record synonym name. |f neither option is specified, the DDDL compiler
searches for the correct element-synonym name in the following order:

Chapter 4. Entity-Type Syntax 4-141

4.20 PROGRAM

1. An éement within a record in a file opened by the program
2. An element in any record; that is, the most recently added element synonym
3. Any element with the specified name

REFerenced function-count times
Specifies the number of times the named element is referenced by a program.
Function-count must be an integer in the range 0 through 32,767.

MODIfied function-count times
Specifies the number of times the program modifies the element. Function-count
must be an integer in the range O through 32,767.

INPut/I-O/OUTput/EXTend FlLe is file-name
Documents the program's use of afile or file synonym and optionally specifies
whether the program is to open the file for input, input and output, or output.

open-count times
Documents the number of OPEN statements in the program. Open-count must be
an integer in the range 0 through 32,767.

EXTernal NAMe is ddnameffile-id
Predefines the 1- through 32-character name by which the file is referenced in
JCL statements.

SUBSChema is subschema-name
Specifies a subschema to be used by the program. Subschema-name must be the
1- to 8-character name of an existing subschema.

of SCHema schema-name
Identifies the schema with which the named subschema is associated.

If the subschema definition includes the AUTHORIZATION IS ON option, this
clause is required to register the program with the subschema before DML
precompilers can precompile the program against the named subschema.
However, if the SET OPTIONS statement specifies SECURITY FOR IDMS IS
ON, the user must be assigned the proper authority to issue this clause.

AREa area-name
Specifies a database area to be accessed by the program and establishes how the
program is to use the area. Area-name must be the name of an area associated
with the schema referenced in the SUBSCHEMA parameter.

OBJect OF
Specifies the number of times that the named area will be the object of an area
sweep. One of the following functions must be specified: FIND, FIND KEEP,
KEEP, OBTAIN, or OBTAIN KEEP.

REAdied FOR
Specifies the number of times that the program will ready the named area in the
specified usage mode. One of the following usage modes must be specified:
RETRIEVAL, PROTECTED RETRIEVAL, EXCLUSIVE RETRIEVAL,
UPDATE, PROTECTED UPDATE, or EXCLUSIVE UPDATE.

4-142 CA-IDMS IDD DDDL Reference

4.20 PROGRAM

CURrency ACCepted
Specifies the number of times that the database key of the current record in the
named area will be accepted by the DML precompilers

function-count times
Specifies the number of times the named function is performed. Function-count
must be an integer in the range 0 through 32,767.

RECord record-name
Documents the program'’s use of a database record by specifying the frequency of
record use by major DML function. One of the following DML functions must be
specified: BIND, CONNECT, DISCONNECT, STORE, ERASE, MODIFY, FIND,
FIND KEEP, GET, KEEP, OBTAIN, OBTAIN KEEP, or CURRENCY
ACCEPTED. Record-name must be a 1- through 16-character value that identifies
a record defined in the subschema named in the SUBSCHEMA clause.

function-count times
Specifies the number of times the named function is performed. Function-count
must be an integer in the range 0 through 32,767.

SET set-name
Documents the program'’s use of a database set by specifying the frequency of set
use by major function. One of the following functions must be specified: IF,
CONNECT, DISCONNECT, FIND, FIND KEEP, CURRENCY ACCEPTED,
KEEP, OBTAIN, OBTAIN KEEP, or RETURN. Set-name must be a 1- through
16-character value that identifies a set associated with the subschema named in the
SUBSCHEMA clause.

function-count times
Specifies the number of times the function is to be performed. Function-count
must be an integer in the range 0 through 32,767.

LOGical RECord (LR) logical-record-name
Documents a program's use of logical records by specifying the frequency of
logical record use by DML function. One of the following DML functions must
be specified: OBTAIN, MODIFY, STORE, ERASE, or COPY.
Logical-record-name must be a 1- through 16-character value that identifies a
logical record associated with the subschema named in the SUBSCHEMA clause.

function-count times
Specifies the number of times the function is to be performed; Function-count
must be an integer in the range 1 through 32,767.

DC options igare
Assigns one or more DC/UCF options to the named program (DC/UCF programs
only).

CONcurrent
Permits more than one task to use the program concurrently. CONCURRENT is
the defaullt.

NONCONCcurrent
Indicates that only one task at a time can use the program.

Chapter 4. Entity-Type Syntax 4-143

4.20 PROGRAM

DUMp threshold is 0/dump-count
Specifies the number of dumps to be taken for program check errors that occur in
the program. A memory dump is taken for each program check error, up to and
including the specified dump count; additional errors cause the program to
terminate abnormally with no memory dump. Dump-count must be an integer in
the range 0 through 255; the default for ADD is 0.

ENAbled
Automatically enables the program at system startup. ENABLED is the default.

DI Sabled
Disables the program until it is enabled explicitly by an operator command during
system execution.

ERRor threshold is 5/error-count
Specifies the number of program check errors that can occur before the program is
disabled. The program will continue executing until reaching the specified error
threshold; thereafter, the program will not be executed, and tasks attempting to use
it will be terminated abnormally. Error-count must be an integer in the range 1
through 255; the default for ADD is 5.

| SA size is Ofinitial-storage-size
Specifies the size in bytes of the initial storage area (ISA) alocated before each
execution of the program (ASSEMBLER programs only). Initial-storage-size is an
integer in the range O through 16,777,215; the default for ADD is 0.

L ANguage is COBol/ASSembler/PL1/ADSo
Documents the source language of the named program; the default for ADD is
COBOL.

Note: This clause does not affect the program'’s relationship to attributes within
the LANGUAGE class.

NONRESident
Specifies that the program is not resident but will be loaded into the program pool
as needed. NONRESIDENT is the defaullt.

RESident
Specifies that the program is made resident automatically when the system starts
up.

PROtect
Specifies that the storage protection feature is in effect. PROTECT is the default.

NONPROtect
Specifies that the storage protection feature is not in effect.

OVErlayable
Permits the program to be overlaid in the program pool. Specify
OVERLAYABLE for executable programs invoked by DC/UCF mechanisms such
as LINK and XCTL. OVERLAYABLE is the default.

4-144 CA-IDMS IDD DDDL Reference

4.20 PROGRAM

NONOVErlayable
Prevents the program from being overlaid in the program pool. Specify
NONOVERLAYABLE to prevent tables in use from being overwritten in the
program pool.

PROgram/MAP/map HEL p/SUBSChema/TABIle/ads DI Alog/ads
APPlication/AM/ACCess module/RCM
Specifies whether the named program is an DC/UCF user program, map, map
help, subschema, table, CA-ADS dialog, CA-ADS application, access module
(AM), or relational command module (RCM); the default for ADD is PROGRAM.

REEntrant
Identifies a fully reentrant program that can be executed repeatedly and can be
executed before a prior execution has completed. REENTRANT is the default.

QUAsIreentrant
Identifies a quasireentrant program that can be executed repeatedly and can be
executed before a prior execution has completed. Quasireentrant programs differ
from fully reentrant programs in their use of save areas and status information.

NONREEntrant
Identifies a nonreentrant program that can be used by only one DC/UCF task at a
time.

REUsable
Identifies the program as reusable. Reusable programs can be executed
repeatedly; instructions modified during program execution are returned to their
initial state when the program completes execution. Reentrant programs are
aways reusable, but reusable programs are not necessarily reentrant. REUSABLE
is the default.

NONREUsable
Identifies the program as nonreusable. Nonreusable programs modify instructions
and do not return them to their initial state after execution. Nonreusable programs
must be reloaded each time they are needed.

SAVearea
Acquires a save area automatically before each execution of the program. Specify
SAVEAREA if the program uses norma IBM calling conventions and starts by
saving registers in a save area. SAVEAREA is the default.

NOSavear ea
Does not acquire a save area automatically before each execution of the program.

SEQUENCce from begin-sequence
Specifies the starting sequence number for a CA-ADS/Batch transaction if the
transaction is to be sequenced. Begin-sequence must be an integer in the range O
through 96,800; zero indicates that no sequence numbers are kept. For further
details, refer to the CA-ADS User Guide manual.

WITh/ALSo WITh/WITHOut
Includes or excludes the specified options when the named program is displayed
or punched. Detailed information for each DISPLAY/PUNCH option is under

Chapter 4. Entity-Type Syntax 4-145

4.20 PROGRAM

2.4.2, “SET OPTIONS syntax” on page 2-9. The options that are listed below
present special considerations for this entity type.

DETails
Includes the DESCRIPTION, ESTIMATED LINES, DC OPTION, and
SEQUENCE FROM specifications.

PROgrams
Includes the SAME AS and PROGRAMS CALLED specifications and
user-defined nests.

Usage: How SET OPTIONS affects PROGRAM statement usage

The SET OPTIONS statement affects PROGRAM statement usage, as follows:

n |f the SET OPTIONS statement specifies SECURITY FOR IDD IS ON, the user
must be assigned the proper authority to issue PROGRAM statements.

n |f the SET OPTIONS statement specifies SECURITY FOR IDMS IS ON, the user
must be assigned the proper authority to register a program with a subschema.

= |f the SET OPTIONS statement specifies AUTHORIZATION IS ON, DML
precompilers will not process a program unless the program has been defined in
the dictionary.

If you specify REPLACE

If you specify REPLACE, the DDDL compiler initializes to defaults and/or excludes
the following options:

DESCRIPTION

FILE IS
ESTIMATED LINES
ELEMENT IS

USER REGISTERED FOR
SUBSCHEMA IS
PUBLIC ACCESS
AREA IS

WITHIN SYSTEM
RECORD IS
PROGRAM CALLED
SET IS

ENTRY POINT
LOGICAL-RECORD IS
MODULE USED

DC OPTION

MAP USED
SEQUENCE
RECORD COPIED
Related programs
RECORD USED
Related attributes

4-146 CA-IDMS IDD DDDL Reference

4.20 PROGRAM

COMMENTS/DEFINITION/comment-key

The following relationships are not affected:
® Programs that call the named program

m Systems in which the named program participates

Tasks that invoke the named program

Relationships defined by means of the CA-IDMS/DC system generation compiler

Example: In the following example, the ADD statement defines the program
STCKUPDT, relates the program to the attribute ASSEMBLER within the class
LANGUAGE, and supplies comment text using the comment key RECOVERY
PROCEDURE. The MODIFY statement adds a DC OPTION clause to the definition
of STCKUPDT to associate a language with the program for the purpose of
documenting its system generation definition for use by the system generation
compiler.
add program stckupdt

program description is 'stock update'

within system inventory

language is assembler
'recovery procedure' is 'restart at step 2'.

modify program stckupdt
dc option is language is assembler.

Chapter 4. Entity-Type Syntax 4-147

421 QFILE

4.21 QFILE

QFILE statements are used to define source code for CA-OLQ dfiles. Optional QFILE
statement clauses relate dfiles to users, systems, and other dfiles; establish
attribute/entity relationships; and maintain documentational entries.

If the SET OPTIONS statement specifies SECURITY FOR IDD IS ON, the user must
be assigned the proper authority to issue QFILE statements.

Syntax: QFILE statement

> ADD QFILE name is gfile-name
MODi fy
REPTace
DELete

L— Version is version-number

L NEXt] |: HIGhest;I

LOWest

v

A
v

A
v

L LANguage is 0OLQ C]
TEXt is user-text

A
v

by user-id B]
PREpared PASsword is password
REVised

A
\

L SAMe as _I QFITe gfile-name]
MODuTe module-name

HIGhest
LOWest

L Version is —{E version-number ———J

L LANguage is OLQ _

L COPy —— ALL COMments TYPes —— FROm —T: QFITe gfile-name ——::I—J
— COMments ————— MODule module-name

— DEFinition

— ATTributes

— SOUrce text

— SYStems

— USERS

— MODULes

QFILES

— comment-key

— relational-key ——

A
\

> | >

HIGhest
LOWest

L— Version is —{E version-number ————J L— LANguage is 0OLQ ———J

4-148 CA-IDMS IDD DDDL Reference

421 QFILE

A
\4

[

| NEW NAMe is new-gfile-name [
Version is —[version-number
NEXt —[HIGhest

LOWest

l— NEW Version is —E new-version-number
NEXt —E HIGhest
LOWest

L qfile DEScription is description-text _

A

A
v

|

|

>

l—[INCTude « USEr is user-id |
EXClude h L user-specification]

(for complete user-specification syntax, see USER clause in Chapter 3)

- >

v

<
<

L PUBTic access is —’_—_|— for ALL « —
ALLOwed NONe

UPDate —
MODify —
REPTace —
DELete —
DISplay —

A
y

L[INCTude « WIThin SYStem __l_ system-name
EXClude —_l_ —[SUBSYstem

HIGhest
LOWest

INClude « MODe —I is attribute-name |
L[EXClude —]_[class-name L TEXt is user-text i

|
L Version is —E version-number —J L TEXt is user-text _

\4

Chapter 4. Entity-Type Syntax 4-149

421 QFILE

INClude « relational-key is gfile-name
EXCTude ——I— —E module-name i

\ 4

HIGhest

| Version is { version-number Al LANguage is OLQ 11 TEXt is user-text]
LOWest

I

v

']
\— edit-instruction —l— QUIT

L— EDIt COMments
—E DEFinition a
mment-ke

Cco -Key

I

COMments is —I: NUL1
DEFinition comment-text

comment-key

A

' |
_T: QFIle —:I— SOUrce follows —{— source statement 1 MSEND
MODule

' i
— EDIt —I: QFIle —:]— SOUrce —{— edit-instruction 1 QUIT
MODule

DISPLAY/PUNCH QFILE statement (for a single (file)

A\
A

4-150 CA-IDMS IDD DDDL Reference

421 QFILE

T

PUNch

DISp]ay_—,— QFITe name is gfile-name

\4

<
<

L Version is —E

version-number —
HIGhest
LOWest

1L LANguage is OLQ _

v

<
<

\4

L PREpared by user-id

[

L PASsword is password]

\4

v

[
WITh {
ALSo WITh :‘
WITHOut

ALL
— ALL COMment TYPes
— ATTRibutes
— COMments

— DEFinitions

— DETails

— HIStory

MODuTes
L ONLy —J
— MODule SOUrce

— NONe
— PROCesses

— PROgrams
— QFITes

— SAMe AS

SYStems —_Ji
SUBSYstems

— TABles

— USErs

USEr DEFINED COMments —
L

UDCs
USEr DEFINED NESts T
L UDNs

— WHEre USED

\4

A

\ 4

SYSpch

LTO—E

MODule module-name

L— Version is _{E

version-number‘-—-——|
HIGhest
LOWest

[

l

| LANguage is language I PREpared by user-id

L PASsword is password —J

A

L VERB DISplay
PUNch
ADD
MODi fy
REPlace

DELete

LAS—[

SYNtax
COMment

—

DISPLAY/PUNCH QFILE statement (for multiple dfiles)

\ 4
A

Chapter 4. Entity-Type Syntax 4-151

421 QFILE

»—— DISplay ALL | QFITes >
FIRst 1 «]
NEXt entity-count
LASt
PRIor

A
4

| -

L PREpared by user-id T H
PASsword is password

A
4

L WHEre conditional-expression _

(for complete conditional-expression syntax, see WHERE clause in Chapter 3)

v

L— BY SET «
L
AREa

A
\ 4

|_ TO —[SYSpch

MODuTe module-name

HIGhest
LOWest

L— Version is _{E version-number ———J

> | >

[

L LANguage is language 11 PREpared by user-id []
PASsword is password

L VERB DISplay L AS T SYNtax ——:]—J
PUNch COMments
ADD
MODi fy
REPTace
DELete

A
A

Parameters

QFILE name is dfile-name
Identifies a new dfile to be established in the dictionary, or an existing occurrence
to be modified, replaced, deleted, displayed, or punched. Qfile-name must be a 1-
through 32-character aphanumeric value. The specified hame must not duplicate
the name of an existing program, map, subschema, or CA-ADS dialog.

LANguageis OLQ
Quialifies the requested gfile/module with a language (must be OLQ). When the
QFILE statement is specified, the DDDL compiler supplies the appropriate
language, OLQ, automatically.

SAMe as QFlle/M ODule dfile-name/modul e-name
Copies al entries associated with the named gfile or module except the name and
LANGUAGE specifications. The dfile/module to be copied must have the
language OLQ.

4-152 CA-IDMS IDD DDDL Reference

421 QFILE

COPy entity-option FROm entity-type-name entity-occurrence-name
Copies selected options from an entity-occurrence definition and merges the
copied options into this definition. QFILESs can copy only from other modules
with a language of OLQ.

TEXt is user-text
Associates a 1- to 40-character comment with the new language. |f the text
includes embedded blanks or delimiters, it must be enclosed in site-specific quote
characters.

NEW NAMe is new-dfile-name
Specifies a new name for the requested dfile. This clause changes only the name
of the dfile; it does not alter or delete any previously defined relationships in
which the dfile participates. Subsequent references to the dfile must specify the
new name. New-dfile-name must be a 1- through 32-character aphanumeric value.
The combination of the new gfile name, version number, and language must not
duplicate that of an established gfile or module occurrence.

NEW Version is new-version/NEXt HIGhest/NEXt L OWest
Specifies a new version number for the named gfile. The combination of the dfile
name, new version number, and language qualification must not duplicate that of
an existing gfile or module.

WIThin SY Stem/SUBSY stem system-name
Associates (INCLUDE) the gfile with or disassociates (EXCLUDE) it from the
specified system or subsystem. System-name must reference an existing system or
subsystem.

relational-key is dfile-name/modul e-name
Associates (INCLUDE) the gfile with or disassociates (EXCLUDE) it from
another dfile or module by means of the named relational key. If the gfiles and/or
modules being related have the same name and version but different languages, or
if the related module has a version of HIGHEST or LOWEST and is qualified by
language, the LANGUAGE parameter must be specified. For a complete
description of the definition and use of relational keys, see 3.6.1, “Relationa
keys’ on page 3-34.

QFIl1e/MODule SOUr ce follows source-statement M SEND
Specifies the source code to be associated with the requested dfile. Each source
statement must be specified in 80-character format. DML commands coded as
module source will be intercepted by the DML precompilers and trandated into
CALL statements when the module is copied. COPY/INCLUDE requests will
also be executed when the module is copied. The QFILE/MODUL E/SOURCE
FOLLOWS statement must be coded on the first line by itself; source statements
follow on the second and subsequent lines; the keyword MSEND, required to
terminate the source statements, must be the first entry on the last line.

WITh/ALSo WITh/WITHOut
Includes or excludes the specified options when the dfile is displayed or punched.
Detailed information for each DISPLAY/PUNCH option is under 2.4.2, “SET
OPTIONS syntax” on page 2-9. The option that is listed below presents special
considerations for this entity type.

Chapter 4. Entity-Type Syntax 4-153

421 QFILE

DETails
Includes the DESCRIPTION clause.

Usage: QFILE statement considerations

The following considerations apply to this statement:

® The reserved words QFILE and MODULE are interchangeable within QFILE
statement clauses, unless otherwise noted. In the following discussion, the term
module applies to processes, dfiles, and tables, unless otherwise noted.

» (file occurrences are stored as specially identified module records in the dictionary
and are automatically associated with the LANGUAGE class through the OLQ
attribute.

If you specify REPLACE

If you specify REPLACE, the DDDL compiler initiaizes to defaults and/or excludes
the following options:

DESCRIPTION

USER REGISTERED FOR

PUBLIC ACCESS

WITHIN SYSTEM
COMMENTS/DEFINITION/comment-key
Related dfiles

Related attributes

QFILE SOURCE

The following relationships are not affected:
. Modules to which the named dfile is a related module
® Users accessing the named dfile
® Programs using the named dfile
® LANGUAGE specification
Example: The following statements add the gfile EMPLOY EES AND OFFICES to

the dictionary and modify the gfile CUSTOMER; note that the language qualification
for EMPLOY EES AND OFFICES is automatically supplied.

4-154 CA-IDMS IDD DDDL Reference

421 QFILE

add qfile 'employees and offices'
description is 'olq menu'
user is tdb
registered for all

public access is allowed for all

qfile source follows
&path=""
signon ss demoss01 schema demoschm(1)
options all header echo nofiller full whole interrupt olgheader
opathstatus nostatistic comments verbose nodbkey picture
define '&path' path
fields for customer are all display nocomma nolead no$
fields for customer are not cust-zipcode
get all sequential customer
fields for ordor are all display nocomma nolead no$
fields for ordor are not ord-date-prom
fields for ordor are not ord-date-shipped
find all ordor in customer-order
fields for item are all display nocomma nolead no$
fields for item are not item-quantities
get all item in order-item
end path
exec path
edit cust-number olgheader -

"number'
edit cust-name picture -
'x(40)"'
msend.

modify qfile customer
user is dbc
registered for update
public access is allowed for all.

Chapter 4. Entity-Type Syntax 4-155

4.22 QUEUE

4.22 QUEUE

QUEUE statements document the manner in which a teleprocessing system groups
similar requests. In the DC/UCF environment, the QUEUE statement can specify the
name of a task to be invoked when the queue contains a certain number of entries.
When the specified number of entries is reached, the system initiates the required task
and processes the queued records.

Note: It is recommended that you maintain QUEUE definitions using the system
generation compiler, not the DDDL compiler. If a system generation
component is processed by the DDDL compiler, only dictionary security is
checked, not system generation security. For more information on using the
system generation compiler, refer to CA-IDMS System Generation.

If the SET OPTIONS statement specifies SECURITY FOR IDMS-DC IS ON, the user
must be assigned the proper authority to issue QUEUE statements.

Syntax: QUEUE statement

4-156 CA-IDMS IDD DDDL Reference

4.22 QUEUE

\4

ADD QUEue name is queue-name
MODi fy
REPlace
DELete

|— Version is version-number

L NEXt _ t HIGhestj

LOWest

A
4

A
v

L[PREpared by user-id
REVised ——I— L PASsword is password i

A
v

L queue DEScription is description-text _

|

|
>
l—[INCTude « USEr is user-id |
EXClude h L user-specification l

(for complete user-specification syntax, see USER clause in Chapter 3)

L PUBTic access is ﬁ for ALL « _ 1
ALLOwed NONe

UPDate —
MODify —
REPTace —
DELete —
DISplay —

v

\4

» I >
>

L[INCTude 4_—|— within SYStem system-name
EXClude

l— Version is T version-number -J
-{ HIGhest
LOWest

Chapter 4. Entity-Type Syntax 4-157

4.22 QUEUE

\ 4

L threshold TASk is task-name N] |
Version is version-number —

_{E HIGhest

LOWest

I

INClude « class-name is attribute-name |
EXClude ——]_ L— TEXt is user-text —J

1

L DC option is

\ 4

THReshold is |
_I: gqueue-entry-count —J
UPPer 1limit is 0 «
_I: maximum-entry-count —J
threshold TASk is task-name

L Version is version-number —J

ENAbled «
DISabled ——J

)

i
L_ ' 1 __J
COMments \— edit-instruction QUIT

EDIt
—E DEFinition a
mment-ke

Cco -Key

v

I

»—J
COMments is _I: NULT
DEFinition comment-text

comment-key

DISPLAY/PUNCH QUEUE statement (for a single queue)

4-158 CA-IDMS IDD DDDL Reference

4.22 QUEUE

>>—I: DISp]aX_:I— QUEue name is gueue-name

PUNch

\4

A

L Version is —{E

version-number ———J
HIGhest
LOWest

v

A

L PREpared by user-id

\4

[

L PASsword is password]

WITh
ALSo WITh :j
WITHOut

I

T

— TASks
— USErs

-

ALL

ALL COMment TYPes
ATTRibutes
COMments
DEFinitions
DETails
HIStory

NONe

SYStems
SUBSYstems _

USEr DEFINED COMments
UDCs I

<
<

LTO—E

SYSpch

MODule module-name

L— Version is version-number ———J
_{E HIGhest
LOWest

| "

|

<
<

| LANguage is language I PREpared by user-id

L PASsword is password]

L VERB

DISplay
PUNch
ADD
MODi fy
REPlace
DELete

I— AS —[SYNtax _‘I_‘
COMments

DISPLAY/PUNCH QUEUE statement (for multiple queues)

Chapter 4. Entity-Type Syntax 4-159

4.22 QUEUE

»—— DISplay ALL | QUEues >
FIRst 1 «
NEXt L— entity-count —J
LASt
PRIor

| -

L PREpared by user-id T H
PASsword is password

L WHEre conditional-expression _

(for complete conditional-expression syntax, see WHERE clause in Chapter 3)

v

L— BY SET «
L
AREa

A
\ 4

|_ TO —[SYSpch

MODuTe module-name

HIGhest
LOWest

L— Version is _{E version-number ———J

> B
|
I

| PASsword is password]

L LANguage is language 11 PREpared by user-id

L VERB DISplay L AS T SYNtax ——:]—J
PUNch COMments
ADD
MOD1i fy

REPTace
DELete

A

Parameters

QUEue name is queue-name
Identifies a new queue to be established in the dictionary, or an existing queue to
be modified, replaced, deleted, displayed, or punched. Queue-name must be a 1-
through 16-character aphanumeric value.

within SY Stem system-name
Associates (INCLUDE) the queue with or disassociates (EXCLUDE) it from the
named system. Systemname must be a 1- through 32-character value. The
WITHIN SYSTEM clause is documentational only, unless the system generation
compiler COPY facility is to be used to copy al queues from an IDD-built
system. When the COPY facility is not used, functional queue/system
relationships are established and maintained by the system generation compiler.

If INCLUDE is specified and the THRESHOLD TASK parameter is omitted, the
DDDL compiler establishes a new queue/system relationship. I1f EXCLUDE is
specified and the THRESHOLD TASK parameter is omitted, the DDDL compiler
removes the queue/system relationship and any dependent task/queue relationships.

4-160 CA-IDMS IDD DDDL Reference

4.22 QUEUE

threshold TASK is task-name
Associates an established task with the queue/system relationship. Task-name
must reference a task that is associated with the named system. The
teleprocessing monitor invokes the named task when the queue contains a
specified number of entries. In DC/UCF environments, this specification is
documentational only; use the THRESHOLD TASK parameter in the DC
OPTION clause (described below), or define the threshold task directly via the
system generation compiler.

DC option is
Documents queue characteristics used by the system generation compiler.

THReshold is 1/queue-entry-count
Specifies the number of queue entries required before a task is initiated to process
the queue entries. Queue-entry-count must be an integer in the range 1 through
32,767; the default for ADD is 1.

UPPer limit is O/maximum-entry-count
Specifies the maximum number of records that can be directed to the queue. This
specification is useful in a test environment to prevent looping programs from
using al the space in the queue. Maximum-entry-count must be an integer in the
range O through 32,767; the default for ADD is 0. If O is specified, no checking
is performed.

threshold TASk is task-name
Identifies the task to be invoked when the specified queue threshold is reached.
Task-name must identify an existing task. |If specified, the VERSION parameter
must identify an explicit number associated with the task; a version of HIGHEST
or LOWEST is not acceptable.

ENAbled
Automatically enables the queue at system startup. ENABLED is the default.

DI Sabled
Automatically disables the queue until it is enabled explicitly by an operator
command during system execution.

WITh/ALSo WITh/WITHOut
Includes or excludes the specified options when the named queue is displayed or
punched. Detailed information for each DISPLAY/PUNCH option is under 2.4.2,
“SET OPTIONS syntax” on page 2-9. The option that is listed below presents
special considerations for this entity type.

DETails
Includes the DESCRIPTION and DC OPTION specifications.

Usage: If you specify REPLACE
If you specify REPLACE, the DDDL compiler initializes to defaults and/or excludes

the following options:

DESCRIPTION
USER REGISTERED FOR
PUBLIC ACCESS

Chapter 4. Entity-Type Syntax 4-161

4.22 QUEUE

COMMENTS/DEFINITION/comment-key
WITHIN SYSTEM

DC OPTION

Related attributes

System/queue relationships established by the system generation compiler are not
affected.

Example: In the following example, the ADD statement defines the queue REG-IN
within the system REGIST and names RUPDT as the threshold task. The MODIFY
statement removes REG-IN from the REGIST system in preparation for use by the
DC/UCF system.

add queue reg-in
description is 'registration input'
within system regist
threshold task is rupdt.

modify queue reg-in
exclude within system regist
dc option threshold task is rupdt
dc option threshold is 3
dc option upper limit is 9.

4-162 CA-IDMS IDD DDDL Reference

4.23 RECORD (REPORT/TRANSACTION)

4.23 RECORD (REPORT/TRANSACTION)

Typically, record occurrences consist of groups of elements within a hierarchical
structure required by a program or schema; however, records can also exist without
elements, usually for documentational or planning purposes. When the user includes
an element within a record, the DDDL compiler creates a record element and
associates it with the named record. A record can have a maximum length of 32,767
characters.

RECORD statements establish and maintain record occurrences but do not directly
relate records to e ements; the RECORD ELEMENT and COBOL substatements that
follow ADD RECORD or MODIFY RECORD statements establish and maintain
record-element structures. These substatements are used as follows;

= RECORD ELEMENT substatement

Identifies existing group and elementary elements and defines filler fields for use
in the requested record. The DDDL compiler assigns a level number to each
element and filler based on the SET OPTIONS statement LEVEL NUMBERS
specification. Optional clauses supply record-specific element synonyms, OLQ
and CULPRIT column headers, and record-specific editing, value, index, and
multiply-occurring element specifications for each record element.

. COBOL substatement

Identifies new or existing elements in a format specific to COBOL language
programs. Optional clauses support record synonyms, record-specific element
synonyms, comments, and COBOL 74 options; allow the user to define the
element's level number, picture, value, and usage; and supply REDEFINES,
INDEXED BY, and OCCURS specifications.

COBOL substatements can be followed by RECORD ELEMENT substatements to
modify an existing record-element structure. Note, however, that if a COBOL
substatement follows a RECORD ELEMENT substatement, the DDDL compiler
creates a new record-element structure that replaces the structure associated with the
RECORD ELEMENT substatement.

Additional substatements allow the user to rebuild and remove record elements and
define restricted record-element structures (called views) for use within subschemas
and files.

Optional RECORD statement clauses relate records to existing files, users, and other
records. (Record occurrences can be related to programs by means of the RECORD
COPIED clause of the PROGRAM statement and the DML precompilers.) The
RECORD statement also supports comments, attribute/entity relationships, and record
synonyms.

Note: If the keyword REPORT or TRANSACTION is used in place of RECORD,
the DDDL compiler creates a special entity occurrence to document the report
or transaction in the dictionary. These reports and transactions appear as
distinct entity types on dictionary reports.

Chapter 4. Entity-Type Syntax 4-163

4.23 RECORD (REPORT/TRANSACTION)

4.23.1 RECORD statement

Syntax: RECORD (REPORT) (TRANSACTION) statement

> ADD RECord — name is record-name >
MODi fy REPort
REPTace TRAnsaction —
DELete

A

L— Version is

version-number

e |

HIGhest_:J
LOWest

v

A

PREpared
REVised

_[

_:]— by user-id

L PASsword is password i

A

L— ENTIty typ

RECord
REPort

e’iS—E

]

TRAnsaction —

»—|
>

LOWest

| SAMe as T RECord - record-name []
{ REPort Version is version-number —
TRAnsaction - { HIGhest

>

>

|

L COPY ——
— COMments
— DEFinition
— ATTributes
— USERS
— RECords
— REPorts
— TRAnsactions

— relational-key

ALL COMments TYPes

comment-key

— FROm record-name []
RECord Version is T version-number —
E REPort E HIGhest
TRAnsaction — LOWest

A

L NEW NAMe is new-record-name J L Version is _I:

version-number

HIGhest j__l
LOWest

NEXt
L

v

A

L NEW Versio

nis
L
NEXt
L

new-version-number
HIGhest
LOWest

v

4-164 CA-IDMS IDD DDDL Reference

4.23 RECORD (REPORT/TRANSACTION)

\4

<
< I

record
report
transaction —

t; DEScription is description-text _

|

|

>

L—[: INCTude « USEr is user-id |
EXClude 1 L user-specification]

(for complete user-specification syntax, see USER clause in Chapter 3)

- >

v

<
<

L PUBTic access is _I:_________:I_ for ALL ¢« —
ALLOwed NONe

UPDate —
MODify —
REPTace —
DELete —
DISplay —

RECord — STOrage is storage-indicator]
REPort
TRAnsaction —

L FORmat is _I: PRIMAry <«]

alternate-format-keyword

A
v

A
v

L OCCurrences are occurrence-count —J

< >
<

L—[INCTude i_:I WIThin FILe file-name [
EXClude Version is T version-number
{ HIGhest
LOWest

\ 4
v

|

I
[—¢— KEY is element-name
l: ASCending t‘

DEScending

»—

|
—
L[: INClude « LANguage is attribute-name [_J
EXCTude ——]{ MODe ————::{ TEXt is user-text

class-name

v

Chapter 4. Entity-Type Syntax 4-165

4.23 RECORD (REPORT/TRANSACTION)

- name SYNonym is

INClude <« RECord
EXClude ——:]{E REPort
TRAnsaction -

A\

L record-synonym-specification]

(expanded record-synonym-specification syntax follows this syntax diagram)

v

<« —

»—

EXClude REPort

L—[INCTude i_:]— relational-key is —{E RECord
TRAnsaction —

— record-name —J

A\

HIGhest

L— Version is _{E version-number ————J L— TEXt is user-text —J
LOWest

I

v

v

' i
—— edit-instruction 1 QUIT

L— EDIt COMments
DEFinition
0LQ header
CULprit header
comment-key ——

COMments ———— is _T: NUL1
DEFinition comment-text
0LQ header

CULprit header —

comment-key

Expansion of record-synonym-specification

A

4-166 CA-IDMS IDD DDDL Reference

4.23 RECORD (REPORT/TRANSACTION)

\4

»»—— record-synonym-name

l— Version is version-number
ImT HIGhest
NEXt LOWest

L—[: INClude « FOR FILe synonym file-synonym
EXClude ——:]_

v

<
<

A
A\

\ 4
v

HIGhest
LOWest

L— Version is _{E version-number ———J

A
v

L——[: PREf1ix :I— is prefix
SUFfix _{E suffix

NUL1T

A

\4
A

L_I: INClude « LANguage is language
EXClude _T

DISPLAY/PUNCH RECORD (REPORT) (TRANSACTION) statement (for a
single record)

L— TEXt is user-text i

Chapter 4. Entity-Type Syntax 4-167

4.23 RECORD (REPORT/TRANSACTION)

— name is record-name

»—[DISplay RECord
PUNch ——,—E REPort
TRAnsaction —

A

v

v

HIGhest
LOWest

|— Version is —E version-number —J

A

L PREpared by user-id B] |
PASsword is password

Y
-——

WITh { ALL
ALSo NITﬂ — ALL COMment TYPes
WITHOut — ATTRibutes

— COBol
— COMments
— DEFinitions

— CULprit headers
— DETails
— ELements
— FILes
— HIStory
— MAPs
— NONe
— OLQ headers

— PICture OVErrides
— PROgrams
— RECELems
— RECords
— REPorts
— SAMe AS
— SCHemas
— SUBOrdinate ELements
— SUBSChemas

— SYNonyms
— TRAnsactions
— USErs
USEr DEFINED COMments —
UDCs

USEr DEFINED NESts T
L UDNs

— VIEws
'— WHEre USED

4-168 CA-IDMS IDD DDDL Reference

4.23 RECORD (REPORT/TRANSACTION)

A
A\

L 1o

SYSpch
—E MODuTe module-name B u
Version is version-number —
—E HIGhest
LOWest
> B

|

! LANguage is language It PREpared by user-id [5
PASsword is password

L VERB DISplay L AS T SYNtax ——:]—J
PUNch COMments
ADD
MODi fy
REPTace
DELete

A

DISPLAY/PUNCH RECORD (REPORT) (TRANSACTION) statement (for
multiple records)

»—— DISplay ALL | RECords —>
FIRst |_ 1 ¢ J t REPorts
NEXt entity-count TRAnsactions —
LASt i
PRIor

v

A

L PREpared by user-id B] |
PASsword is password

v

A

L WHEre conditional-expression _

(for complete conditional-expression syntax, see WHERE clause in Chapter 3)

l—BY

v

SET «
—E AREa

A
\ 4

L TO SYS
ch
T noon

MODule module-name

l— Version is version-number ——l
—E HIGhest
LOWest

v

\

|

| LANguage is language I PREpared by user-id []
PASsword is password

l— VERB DISplay I— AS —[SYNtax —J—‘
PUNch COMments
ADD
MODi fy
REPlace
DELete

A

Chapter 4. Entity-Type Syntax 4-169

4.23 RECORD (REPORT/TRANSACTION)

Parameters:

RECord/REPort/TRANsaction name is record-name
Identifies a new record (report, transaction) to be established in the dictionary, or
an existing record to be modified, replaced, deleted, displayed, or punched.
Record-name must be a 1- through 32-character aphanumeric value.

The combination of the record name and version number must be unique in the
dictionary; that is, it must not duplicate the primary or synonym name of an
existing record, report, or transaction.

ENTIty type is RECord/REPort/TRANsaction
Changes the entity-type name to RECORD, REPORT, or TRANSACTION. This
clause is meaningful only with a MODIFY statement.

SAMe AS RECord/REPort/TRAnNsaction record-name
Copies all entries associated with the specified record occurrence, with the
exception of the NAME, WITHIN FILE, RECORD NAME SYNONYM and
associated options, ELEMENT NAME SYNONYM, INDEXED BY FOR
RECORD SYNONYM, and VIEW ID specifications.

NEW NAMe is new-record-name
Specifies a new name for the requested record. This clause changes the name of
the record occurrence only; it does not alter or delete any relationships in which
the record participates. Subsequent references to the record must specify the new
name. New-record-name must be a 1- through 32-character aphanumeric value.
The combination of the new record name and version humber must not duplicate
that of an existing record, report, transaction, or synonym in the dictionary. If the
requested record participates in a schema, the NEW NAME clause is not valid.

NEW Version is new-version/NEXt HI Ghest/NEXt LOWest
Specifies a new version number for the named record. The combination of the
record name and new version number must not duplicate that of an existing
record, report, transaction, or synonym in the dictionary.

RECord/REPort/TRANsaction STOrage is storage-indicator
Documents the named record's storage medium or method; for example, tape or
disk. Storage-indicator must be a 1- through 16-character aphanumeric value.

FORmat is
Specifies the format to be assigned to every element that participates in the named
record-element structure.

Note: This specification applies only to elements that are included in the named
record by means of the RECORD ELEMENT substatement.

PRIMary
Specifies that the primary format is to be used.

alter nate-for mat-keyword
Specifies that an aternative format is to be used. Alternate-format-keyword must
reference a valid alternative picture keyword as defined in the SET OPTIONS
statement. If an element within the record does not have a corresponding
alternative format, the DDDL compiler assigns the primary format to that element.

4-170 CA-IDMS IDD DDDL Reference

4.23 RECORD (REPORT/TRANSACTION)

For further discussion of aternative formats, see 4.6, “ELEMENT” on page 4-25,
earlier in this chapter. Also see 2.4, “SET OPTIONS statement” on page 2-8.

OCCurrences ar e occurrence-count
Specifies the actual or estimated number of times the record will occur in files or
databases. Occurrence-count must be in the range 0 through 2,147,483,647. This
clause is documentational only.

WITHIN FILE file-name
Associates (INCLUDE) or disassociates (EXCLUDE) a file in which the named
record occurs. File-name must be the primary name of an existing file. This
clause creates a record-synonym/for-file-synonym relationship between the primary
record synonym and primary file synonym established by means of the FOR FILE
SYNONYM parameter (described below). WITHIN FILE is documentational
only. The KEY parameter is not valid with EXCLUDE.

KEY is element-name
Specifies that the named record is sequenced on keys within the file.
Element-name specifies the names of fields to be used for sort control; the
specified element need not participate in the named record. Each record definition
can include up to five KEY parameters.

ASCending
Specifies that the records in the file are sorted by element-name in sequence from
lowest to highest value.

DEScending
Specifies that the records in the file are sorted by element-name in sequence from
highest to lowest value.

L ANguage/M ODe/class-name is attribute-name
Relates the named record to the named attribute by means of the specified class.
The following considerations apply if the LANGUAGE or MODE class is
specified:

® L ANGUAGE identifies the language of programs in which the named record
will be used. If LANGUAGE is specified, attribute-name must identify an
existing attribute within the LANGUAGE class.

® MODE identifies the operating mode of programs in which the named record
will be used.

For additional rules pertaining to this clause, see 3.6.2, “Attribute/entity
relationships’ on page 3-38.

RECord/REPort/TRAnsaction NAMe synonym is
Establishes (INCLUDE) or removes (EXCLUDE) a synonym (alternative name)
for the record or modifies an existing synonym. When a record is added to the
dictionary, the DDDL compiler builds a record synonym using the record's
primary name and version number. This synonym is known as the primary record
synonym. Any number of synonyms can be defined for the primary record
synonym. If EXCLUDE is specified, only the RECORD NAME SYNONYM
parameter is valid.

Chapter 4. Entity-Type Syntax 4-171

4.23 RECORD (REPORT/TRANSACTION)

record-synonym
Specifies the 1- through 32-character name of a record synonym or the primary

record name. If the optional VERSION parameter is not specified, the DDDL
compiler uses the default version number established in the SET OPTIONS
statement DEFAULT FOR EXISTING VERSION clause; if no record synonym
exists with the default existing version, the DDDL compiler uses the default
version number established in the SET OPTIONS statement DEFAULT FOR
NEW VERSION clause.

FOR FILe synonym file-synonym
Associates (INCLUDE) the primary file or file synonym with, or disassociates it
from (EXCLUDE), the record synonym. In the CA-IDMS/DB COBOL
environment, this relationship determines which record synonyms are copied into a
program when the DMLC precompiler performs an FD COPY function. In the
CULPRIT environment, this relationship determines which record synonyms are
associated with the CULPRIT file.

PREfix/SUFfix is prefix/suffixYNULI
Specifies a prefix or suffix for use with all elements that participate in the named
record-element structure or removes an existing prefix or suffix. The specified
prefix or suffix does not become part of the record synonym. However, the
DDDL compiler adds the prefix/suffix to the beginning/end of the element or
element synonym to form the record-specific element synonym. Prefix/suffix must
be a 1- to 10-character value. The combined length of the element name and the
prefix or suffix must not exceed 32 characters. If the resulting element-synonym
name exceeds 32 characters, the DDDL compiler truncates the element name
before adding the prefix or suffix.

L ANguage is language
Associates a language defined as an attribute of the LANGUAGE class with, or
disassociates it from, the record synonym. The DML precompilers use the
LANGUAGE specification to determine the correct record synonyms to be copied
into programs written in various languages.

WITh/ALSo WITh/WITHOut
Includes or excludes the specified options when the named record is displayed or
punched. Detailed information for each DISPLAY/PUNCH option is under 2.4.2,
“SET OPTIONS syntax” on page 2-9. The options that are listed below present
specia considerations for this entity type.

DETails
Includes the DESCRIPTION, RECORD STORAGE, FORMAT,
OCCURRENCES, VIEW ID, and RECORD LENGTH (displayed as comments)
specifications.

EL ements
Includes the specifications that describe the record-element format. ELEMENTS
displays the names of record elements that are not subordinate to any other
elements. To exclude elements from the display, specify WITHOUT
ELEMENTS.

4-172 CA-IDMS IDD DDDL Reference

4.23 RECORD (REPORT/TRANSACTION)

RECords
Includes all user-defined nests defined for the named record.

REPorts
Includes all user-defined nests defined for the named report.

TRAnNsactions
Includes all user-defined nests defined for the named transaction.

COBol
Includes all COBOL format record elements associated with the named record.
Note that ELEMENTS is the overriding option if a display of both ELEMENTS
and COBOL is requested.

RECELems
Includes all COBOL format record elements associated with the named record.
RECELEMS displays only the record-element name; the names and version
numbers of the elements that participate in the record are not displayed. Note that
ELEMENTS is the overriding option if a display of both ELEMENTS and
RECELEMS is requested.

SUBOrdinate ELements
Includes subordinate elements. SUBORDINATE ELEMENTS is valid only with
the RECORD ELEMENT format; to display or punch a COBOL format, specify
the DISPLAY WITH COBOL option. To exclude subordinate elements from the
display, specify WITH ELEMENTS PICTURE OVERRIDES WITHOUT
SUBORDINATE ELEMENTS.

VIEws
Includes subschema or IDD views.

SYNonyms
Includes al synonyms associated with the record. Specify SYNONYMS to
display programs, schemas, subschemas, and maps that are connected to the record
synonym. For example, to display the programs with which the CUSTOMER
record is associated, specify DISPLAY RECORD CUSTOMER WITH
PROGRAMS SYNONYMS.

PICture OVErrides
Includes element picture definitions for the record, including the start position of
the element within the record and the length of the element, in bytes.

Usage: Restrictions on the RECORD statement

The following restrictions apply to the RECORD statement:

n |f the SET OPTIONS statement specifies SECURITY FOR IDD IS ON, the user
must be assigned the proper authority to issue RECORD statements.

» Records that participate in schemas require specia consideration when they are
deleted or replaced. Records that participate in schemas cannot be deleted by the
DDDL compiler; documentational entries can, however, be submitted.

Within records that participate in schemas, record elements can be replaced by
one or more record elements; optionally, one or more record elements that follow

Chapter 4. Entity-Type Syntax 4-173

4.23 RECORD (REPORT/TRANSACTION)

the replaced record elements in the record structure can be removed. The
following considerations apply:

To modify record elements, use the RECORD ELEMENT substatement,
described later in this chapter. It is recommended that the LINE option be
used to accurately position the record element.

The primary replacement record element must have the same RECORD
ELEMENT NAME as the original record element; however, a different
version number is valid.

After issuing the REPLACE command for a particular record element, the
user can insert or remove record elements immediately following the replaced
record element, subject to the length restrictions described below.

Record elements to be inserted into the record structure following the
replacement record elements must be previoudly defined in the dictionary.

The record elements to be replaced cannot be defined as the schema control
field (CALC-key, sorted set key, or index set key), nor can they contain a
subordinate element defined as the schema control field.

The total length of the replacement record elements must equa the length of
the element being replaced. The logical position of the elements following
the replaced element cannot be altered; the overall record length cannot be
changed. When the DDDL compiler detects a change in the replacement
record length, it rejects the request; the compiler restores the original elements
in the record, removes replacement elements, and displays an error message.

A filler field (RECORD ELEMENT IS 'FIL nnnn’) can be replaced by any
element previoudy defined in the dictionary.

Elements defined as COBOL level-88 items (USAGE IS
CONDITION-NAME) can be inserted, replaced, or removed from the record
structure without restriction.

® Records that participate in maps can be modified; the following considerations
apply:

To modify record elements, use the RECORD ELEMENT substatement,
described later in this chapter. It is recommended that the LINE option be
used to accurately position the record element.

When a REPLACE RECORD ELEMENT command specifies that the length
of the replacement elements is equal to the length of the original element, the
DDDL compiler removes the original element from the record and inserts the
new elements in its place. Recompilation of maps in which the record
participates and programs that use the maps is not necessary.

When a record element is removed from or inserted into the record structure,
or is replaced with a record element of unequal length, the DDDL compiler
updates the record and flags the maps and programs associated with the
record for recompilation.

Record elements and group record elements with subordinate record elements
that are identified as map fields cannot be removed from or replaced in the

4-174 CA-IDMS IDD DDDL Reference

4.23 RECORD (REPORT/TRANSACTION)

record. The same restriction applies to record elements that are the object of
the following statements that implicitly remove or replace record elements:
REMOVE/REBUILD/REPLACE RECORD ELEMENTS, REMOVE ALL,
and COBOL.

An occurrence count for a multiply-occurring record element cannot be
decreased if it makes afield in a map obsolete. For example, a MODIFY
RECORD statement followed by a RECORD ELEMENT substatement that
specifies OCCURS 11 TIMES produces an error if the 12th occurrence of the
field was mapped.

A record synonym that participates in a map cannot be excluded.

Madifications to the RECORD statement clauses listed in the following table
may necessitate regeneration of al maps in which the record participates and,
in some cases, recompilation of the programs that use those maps. To obtain
alist of such programs, issue a DISPLAY MAP statement for each map in
which the named record participates; the output lists the programs compiled
against that map.

Elements defined as COBOL level-88 items (USAGE IS
CONDITION-NAME) can be inserted, replaced, or removed from the record
structure without restriction.

Regenerate and recompile requirements

Modified RECORD clause Map Program
regeneration recompilation
required? required?

BLANK WHEN ZERO NO NO

CODE TABLE YES NO

COMMENTS/DEFINITION NO NO

EDIT NO NO

EDIT TABLE YES NO

ELEMENT NAME SYNONYM NO NO

EXTERNAL PICTURE YES NO

INDEX KEY NO NO

INDEXED BY NO NO

JUSTIFY NO NO

NEW RECORD NAME/VERSION NO NO

OCCURS YES YES

OCCURS DEPENDING ON name NO NO

PICTURE YES YES

Chapter 4. Entity-Type Syntax 4-175

4.23 RECORD (REPORT/TRANSACTION)

Modified RECORD clause Map Program
regeneration recompilation
required? required?

REMOVE RECORD ELEMENT YES: YES:

REPLACE RECORD ELEMENT YES: YES:

ADD RECORD ELEMENT YES: YES:

RECORD NAME NO NO

SYNONYM PREFIX/SUFFIX

REDEFINES YES YES

SIGN YES YES

SYNC/NOSYNC NO NO

USAGE YES YES

VALUE NO NO

Note: 10nly necessary if displacements are affected

If you specify REPLACE

If you specify REPLACE, the DDDL compiler initializes to defaults and/or excludes

the following clauses:

DESCRIPTION

USER REGISTERED FOR
PUBLIC ACCESS
STORAGE

FORMAT
OCCURRENCES
WITHIN FILE

COMMENTS/DEFINITIONS/OLQ HEADER/CULPRIT HEADER/ comment-key

ATTRIBUTES

RECORD SYNONYMS (except as noted below)

RECORD ELEMENT
VIEW
PREFIX/SUFFIX

Related records, reports, transactions

LANGUAGE

The following relationships are not affected:

® Primary record synonyms

= Records to which the named record is related

® Programs that have copied or access the named record

» Map records associated with the named record

4-176 CA-IDMS IDD DDDL Reference

4.23 RECORD (REPORT/TRANSACTION)

® Record synonyms that are copied or accessed by programs or maps or that have
not been built by the DDDL compiler

Record synonyms (sites using the SQL option)

If the language specified is SQL, no other record synonym associated with the record
may have a language of SQL associated. The language of SQL is associated with
record synonyms to be used (at sites with the SQL option) in SQL to access non-SQL
databases.

Displaying records

If you display a record:

s WITH ELEMENTS — the names of record elements that are not subordinate to
any other elements are displayed

» WITH ELEMENTS ALSO WITH SUBORDINATE ELEMENTS — the names of
subordinate record elements are displayed

= WITH ELEMENTS ALSO WITH PICTURE OVERRIDES — the element
definitions for the specified record are displayed, including: the start position of
the element within the record and the length of the element, in bytes

Note: The message RECORD CONTAINS CRITICAL ERRORS applies only to
Computer Associates products and appears when you display any record,
report, or transaction that contains a critical error (for example, a record or
record element with a length of 0).

If WITHOUT PICTURE OVERRIDES is specified

If WITHOUT PICTURE OVERRIDES is requested, the displayed output includes the
record elements, subordinate elements, element synonyms, and all information that can
be specified only at the record-element or subordinate-record-element level rather than
in the element definition (for example, SYNC, OCCURS, INDEXED BY, and INDEX
KEY). The LINE IS, SUBORDINATE ELEMENT REDEFINES, and
SUBORDINATE ELEMENT OCCURS specifications and picture-related information
are excluded from the display.

This option is useful in an online environment for rebuilding a record, modifying
portions of a record, or building a new record, as follows:

® Torebuild arecord, issue a DISPLAY request, specifying the WITHOUT
PICTURE OVERRIDES, WITHOUT SYNONYMS, VERB IS MODIFY, and AS
SYNTAX options. Insert a REMOVE ALL substatement immediately following
the MODIFY RECORD statement. Resubmit the displayed definition to the
DDDL compiler, which rebuilds the record as if it were performing an ADD
operation (using the current element definitions to build the record-element
structure). The displayed record definition can be replaced by specifying the
VERB IS REPLACE parameter on the DISPLAY/PUNCH request.

= To rebuild portions of a record, issue a DISPLAY request, specifying the
WITHOUT PICTURE OVERRIDES, VERB IS MODIFY, and AS SYNTAX

Chapter 4. Entity-Type Syntax 4-177

4.23 RECORD (REPORT/TRANSACTION)

options. Specify the REPLACE option for each displayed record element to be
changed. Resubmit the displayed definition to the DDDL compiler. The DDDL
compiler uses the current definition of each element named in the record (for
which REPLACE has been specified) to rebuild the record.

® To build a new record using an existing element structure, issue a DISPLAY
request, specifying the WITHOUT PICTURE OVERRIDES and AS SYNTAX
options. Supply the new record name and/or version number, and resubmit the
record definition to the DDDL compiler. The DDDL compiler uses the
picture-related information and group-to-subordinate-element structure from the
current definition of each element named in the record to build the new record.

Note: If a subordinate record element is defined with both a REDEFINES and an
OCCURS clause, the REDEFINES specification is supplied from the element
and the OCCURS specification is supplied from the subordinate record element
when the record is built or rebuilt.

Example 1. This example shows:
1. Definition of two elements
2. Definition of a group element
3. Association of the group element with a record
4. Display of the entire record
1) Defining elements

The following two ADD ELEMENT statements establish the elements
CUSTOMER-NUMBER and CUSTOMER-NAME in the dictionary. Element names
are used when the elements appear with the record having the primary record name.
Element synonyms provide language-specific names.
add element name is customer-number version is 1
element synonym is customer_number for group synonym customer_group
element synonym is custnum for group synonym custgrup

element synonym is custno for group synonym custgp
picture is 9(6)

add element name is customer-name version is 1
element synonym is customer_name for group synonym customer_group
element synonym is custname for group synonym custgrup
element synonym is custnm for group synonym custgp
picture is x(30)

2) Defining a group element

The following ADD ELEMENT statement establishes the group element
CUSTOMER-GROUP. The SUBORDINATE ELEMENT clause incorporates the
elements CUSTOMER-NAME and CUSTOMER-NUMBER. ELEMENT SYNONYM
clauses are used to establish a connection between the ELEMENT definition and a
RECORD definition.

4-178 CA-IDMS IDD DDDL Reference

4.23 RECORD (REPORT/TRANSACTION)

add element name is customer-group version is 1
element synonym is customer_group for group synonym customer_record
element synonym is custgrup for group synonym custrecd
element synonym is custgp for group synonym custrc

subordinate

elements are

customer-number version is 1
customer-name version is 1

3) Associating the group element with a record

The following ADD RECORD statement adds the record CUSTOMER-RECORD to
the dictionary and includes the group element CUSTOMER-GROUP.

The DDDL compiler compares the record synonyms with the group synonyms in the
element definition. When a match is found, the element synonym associated with that
group synonym is automatically copied into the record for that record synonym.

add record name
record name
record name
record name

is customer-record version is 1
synonym is customer_record version 1
synonym is custrecd version 1
synonym is custrc version 1.

record element is customer-group.

4) Displaying the record

The following DISPLAY RECORD statement displays the CUSTOMER-RECORD
structure defined in steps 1 through 3.

Chapter 4. Entity-Type Syntax 4-179

4.23 RECORD (REPORT/TRANSACTION)

display record customer-record.

*+ add

*+ record name is customer-record version is 1

*+
*+
*+
*+
*+
*+
*+
*+
*+
*+
*+
*+
*+
*+
*+
*+
*+
*+
*+
*+
*+
*+
*+
*+
*+
*+
*+
*+
*+
*+
*+
*+

date created is 01/27/82

prepared by mjj

record Tength is 36

record name synonym is customer-record version 1
record name synonym is customer_record version 1
record name synonym is custrecd version 1

record name synonym is custrc version 1

record element is customer-group version 1 Tine is 000100

level number is 02

usage is display

element name synonym for record synonym customer record version 1 is
customer_group

element name synonym for record synonym custrecd version 1 is custgrup

element name synonym for record synonym custrc version 1 is custgp

subordinate element is customer-number version 1 line is 000200

level number is 03

picture is 9(6) usage is display

element name synonym for record synonym customer record version 1 is
customer_number

element name synonym for record synonym custrecd version 1 is custnum

element name synonym for record synonym custrc version 1 is custno

subordinate element is customer-name version 1 line is 000300

level number is 03

picture is x(30) usage is display

element name synonym for record synonym customer record version 1 is
customer_name

element name synonym for record synonym custrecd version 1 is custname

element name synonym for record synonym custrc version 1 is custnm

Example 2: The following example illustrates the modification of a record that
participates in a schema. It shows:

1. The original record layout

2. The DDDL statements that modify the record

3. The final record layout

1) The original record layout: The CUSTOMER record has been previously defined
in the dictionary. The length of CUST-ADDRESS is 40 bytes.

Note: The COBOL layout and version numbers of the elements are for illustrative

purposes only. Each of these elements must be defined in the dictionary using
RECORD ELEMENT syntax.

4-180 CA-IDMS IDD DDDL Reference

4.23 RECORD (REPORT/TRANSACTION)

Line
Num Record Element

100 05 cust-number

200 05 cust-name

300 05 cust-ssn

400 05 cust-address

500 10 cust-addrl

600 10 cust-addr2

700 15 cust-city
800 15 cust-zip-code
900 15 cust-zipcode
1000 05 filler

1100 05 cust-credit

1200 88 cust-credit-exec
1300 88 cust-credit-good
1400 88 cust-credit-poor
1500 05 cust-sales-info

1600 10 cust-sales-qtr
1700 10 cust-num-sales
1800 10 cust-amt-sales
1900 05 filler

ver
ver
ver
ver
ver
ver
ver
ver
ver

ver
ver
ver
ver
ver
ver
ver
ver

= e s s e s e

= e e e e

pic x(10).
pic x(20).
pic x(09).

pic x(20).

pic x(15).

pic x(05).

redefines cust-zip-code

pic 9(05).

pic x(05).

pic x(03).
value
value
value 'xxx'.

'aaa’.

1 1
.

occurs 4 indexed by cuix.
pic 9(05) comp-3.

pic 9(07) comp-3.

pic x(03).

The user defines four new elements in the dictionary, using the DDDL compiler. The
length of CUST-ADDRESS VERSION 2 is 44 bytes:

Note: The COBOL layout and version numbers of the elements are for illustrative
purposes only. Each of these elements must be defined in the dictionary using

RECORD ELEMENT syntax.

Record Element
05 cust-nr-numeric

05 cust-ssn
10 cust-ssn-3
10 cust-ssn-2
10 cust-ssn-4

88 cust-credit-unkn

05 cust-address
10 cust-street
10 cust-addr2
15 cust-city
15 cust-state
15 cust-zip-code
20 filler
20 cust-zip-5
15 cust-zipcode
cust-zip-code

ver

ver
ver
ver
ver

ver

ver
ver
ver
ver
ver
ver

ver
ver
ver

NN N — =N

—_

pic 9(10).

pic x(03).
pic x(02).
pic x(04).

value'unk'.

pic x(20).

pic x(13).
pic x(02).

pic x(04).
pic x(05).
redefines
pic 9(09).

2) The DDDL statements that modify the record: The user issues a MODIFY
RECORD command and RECORD ELEMENT substatements to the DDDL compiler
to place the newly defined elements into the CUSTOMER record.

CUST-NUMBER is replaced by the new element definition CUST-NR-NUMERIC.

Chapter 4. Entity-Type Syntax 4-181

4.23 RECORD (REPORT/TRANSACTION)

replace record customer.
replace record element cust-number version 1 line 100 .

record element cust-nr-numeric version 1 line 110
redefines cust-number .

CUST-SSN and CUST-ADDRESS are replaced using a new element with the same
name but a different version number. Because CUST-ADDRESS VERSION 2 is four
bytes longer than VERSION 1, a new one-byte filler field is inserted following
CUST-ADDRESS, and the original five-byte filler field is removed. A new COBOL
level-88 item is inserted.

replace record element cust-ssn version 2 line 300 .

replace record element cust-address version 2 Tine 400 .

record element 'fil 0001’ line 910 .
remove record element 'fil 0005 line 1000 .
record element cust-credit-unkn line 1110 .

3) The final record layout: The record elements associated with the newly modified
CUSTOMER record are shown below. The schema definition is automatically
adjusted to reflect the changes.

Line
Num Record Element
100 05 cust-number ver 1 pic x(10).
200 05 cust-nr-numeric ver 1 redefines cust-number
pic 9(10).
300 05 cust-name ver 1 pic x(20).
400 05 cust-ssn ver 2.
500 10 cust-ssn-3 ver 1 pic x(03).
600 10 cust-ssn-2 ver 1 pic x(02).
700 10 cust-ssn-4 ver 1 pic x(04).
800 05 cust-address ver 2.
900 10 cust-street ver 1 pic x(20).
1000 10 cust-addr2 ver 2.
1100 15 cust-city ver 2 pic x(13).
1200 15 cust-state ver 1 pic x(02).
1300 15 cust-zip-code ver 2.
1400 20 filler pic x(04).
1500 20 cust-zip-5 ver 1 pic x(05).
1600 15 cust-zipcode ver 2 redefines
cust-zip-code ver 2 pic 9(09).
1760 05 filler pic x(01).
1800 05 cust-credit ver 1 pic x(03).
1900 88 cust-credit-unkn ver 1 value 'unk'
2000 88 cust-credit-exec ver 1 value 'aaa'.
2100 88 cust-credit-good ver 1 value '
2200 88 cust-credit-poor ver 1 value 'xxx'
2300 05 cust-sales-info ver 1.
2400 10 cust-sales-qtr ver 1 occurs 4 indexed by cuix.
2500 10 cust-num-sales ver 1 pic 9(05) comp-3.
2600 10 cust-amt-sales ver 1 pic 9(07) comp-3.
2700 05 filler pic x(03).

4-182 CA-IDMS IDD DDDL Reference

4.23 RECORD (REPORT/TRANSACTION)

Syntax and parameter descriptions for the RECORD ELEMENT, COBOL, REMOVE
ALL, and VIEW substatements, and the DISPLAY/PUNCH RECORD SYNONYM
statement follow.

4.23.2 RECORD ELEMENT substatement

RECORD ELEMENT substatements associate existing elements with records and
update existing record-element structures. To include an element within a
record-element structure, specify a RECORD statement followed by the keywords
RECORD ELEMENT. After the RECORD ELEMENT identification, enter optional
clauses that define record-specific characteristics for the element.

Syntax: RECORD ELEMENT substatement

S8 RECord ELEment is element-name
!: REMove i‘
REPTace

\ 4

\ 4

L— Version is —{E version-number ———J L— LINe is line-number —J

HIGhest
LOWest
—— SUBordinate ELement is element-name [] >
Version is version-number —
—{ HIGhest
LOWest

A\
v

L— LINe is line-number —J

A

L ELement name SYNonym is element-synonym

\
v

| FOR RECord synonym record-synonym

L— PICture is picture
—E NULL
BUILT

HIGhest

| Version is _{E version-number ——J
LOWest

A
v

Chapter 4. Entity-Type Syntax 4-183

4.23 RECORD (REPORT/TRANSACTION)

v

L USAge is —— DISplay

COMPUTATIONAL

ComP
COMPUTATIONAL-4 —
COMP-4
BINary
COMPUTATIONAL-1

COMP-1
SHOrt-point ——

COMPUTATIONAL-2
COMP-2

LONg-point
COMPUTATIONAL-3

COMP-3

PACked

— POInter
— BIT

— CONdition-name

<
<

L REDefines —E

element-name |

*

NULT

v

\ 4

LE INClude <« VALues is
EXClude ——l— —[are JL ALL J

v

>
-

T
—l_—ﬂ initial-value
(B condition-value 1L THRu

—’_—_|— condition-value J
ALL

[,]

<
<

L EXClude ALL VALues _

<
<

|— 0CCurs

A\

occurrence-count times
occurrence-count times DEPending on control-element-name
0 TO occurrence-count times DEPending on control-element-name —

NULT

v

4-184 CA-IDMS IDD DDDL Reference

4.23 RECORD (REPORT/TRANSACTION)

\4

L INDexed by index-element-name

|
(—y— index-element-name L)
NUL1
FOR RECord synonym record-synonym-specification —

(expanded record-synonym-specification syntax follows this syntax diagram)

<
<

L INDex KEY is index-element-name —E ASCending a |
DEScending
I
|— index-element-name —E ASCending j—Llj—
(DEScending)
NUL1
SYNC ——
NO SYNC —

A

L JUStify is T ON

OFF

A

L BLAnk when ZERo is —E ON

OFF
L SIGn is —E[NUU | |
LEAding
TRAiling JL SEParate character J
o | .
' |
|— EDIt COMments ——— —I— edit-instruction 1 QuUIT

DEFinitions

0LQ header

CULprit header —

comment-key

|
COMments ——— is —E NUL1 —4|—‘
DEFinitions comment-text
0LQ header
CULprit header —

comment-key

Y
I
v

\ 4

T
>—
L—[: INCTude ¢« EDIT VALid « TABTe is
EXClude j— —[INValid :l—

Chapter 4. Entity-Type Syntax 4-185

4.23 RECORD (REPORT/TRANSACTION)

\ 4

LISt |

| I
(—V— value) —
L THRu value l

NULT

- —
V

EXClude

T
(—4— encode-value decode-value 1)
NULT

INCTude i_I CODe TABle is l LISt

A

\4
A

L EXTernal PICture is —I: gicturf_:]—J
NUL1

Expansion of record-synonym-specification

>
| 4.

>

\ 4

L record-synonym-name

HIGhest
LOWest

L— Version is —{ version-number ———J

v
A

>

— is index-element-name ———
T
_{; (—l— index-element-name L)—

]

NULT

Parameters

RECord ELEment is element-name

Specifies the element that is the object of the RECORD ELEMENT substatement.
Element-name must be the primary name of an existing element; the named
element must be the highest level element within a record (usually an 02 level), or
alevel-88 item. If the named element is not in the record-element structure, the
DDDL compiler adds the existing element definition and any record-specific
characteristics to the end of the record-element structure. |If the optional LINE
parameter (described below) is not specified, the element definition is placed at
the end of the record-element structure. If the named element already participates
in the record-element structure, the DDDL compiler modifies the record-element
definition based on the optional clauses specified.

LINeisline-n

Quialifies nonunique record-element names or specifies where the DDDL compiler
isto insert a new element definition in the record-element structure. Line-n must
be an integer in the range 1 through 999,999.

This parameter must be specified unless the requested record element is the first
nonunique element within the structure. Following compilation of the RECORD
statement, the DDDL compiler assighs sequence numbers to all record elements;
the default sequence number specified in the SET OPTIONS statement
SEQUENCE clause is the starting and increment value. The assigned numbers
appear on record reports and in DISPLAY/PUNCH output. If the LINE parameter

4-186 CA-IDMS IDD DDDL Reference

4.23 RECORD (REPORT/TRANSACTION)

in a MODIFY RECORD RECORD ELEMENT statement references the line
number of an existing record element, but that element has a different name than
the requested record element, the DDDL compiler issues an error message, unless
the REPLACE parameter has been specified.

Note: If you do not specify a LINE clause in a RECORD ELEMENT
substatement (one that doesn't use REPLACE or REMOVE) the compiler
adds the record element to the end of the record definition.

REM ove/REPlace
Deletes or replaces the specified record element and its subordinate elements. |If
REMOVE or REPLACE is specified, element-name must match the name of an
element in the named record-element structure.

SUBordinate ELement is element-name
Identifies an existing subordinate element that is to be modified for use within the
named record-element structure. All clauses between this substatement and
another SUBORDINATE ELEMENT or RECORD ELEMENT substatement apply
to the named subordinate el ement or level-88 item.

Note: The SUBORDINATE ELEMENT specification is used to change
record-element characteristics such as picture and usage; it is not used to
create group-element/subordinate-element structures. These structures must
be defined by means of the ELEMENT entity statement (described under
4.6, “"ELEMENT” on page 4-25, earlier in this chapter).

EL ement name SYNonym is element-synonym
Establishes a synonym (alternative name) for the element when it participates in
the named record-element structure. Element-synonym is the 1- to 32-character
synonym name. If this clause appears following a SUBORDINATE ELEMENT
substatement, the synonym is associated with the subordinate element.

This clause can be coded once for each synonym to be associated with the named
record. Any prefix or suffix defined for the record synonym with which the
element synonym is associated will be appended to the element-synonym name.

FOR RECord synonym record-synonym-specification
Associates the element (or subordinate element) synonym with the designated
record synonym.

Note: If the FOR RECORD SYNONYM clause is not specified, the named
record element (or subordinate element) is associated with the primary
record synonym only.

PICtureis
Specifies a record-specific PICTURE clause for the record element or subordinate
element.

picture
Creates a record-specific PICTURE clause for the named record element. If the
named record element is an elementary element, picture becomes the
record-specific picture for the element. If the named record element is a group
element, picture becomes the record-specific picture for the group element; the

Chapter 4. Entity-Type Syntax 4-187

4.23 RECORD (REPORT/TRANSACTION)

DDDL compiler removes from the record any subordinate elements defined for the
group.

Note: The maximum length of a record element (including its usage) is 32,767
characters.

Picture must be a 1- through 30-character value that describes aphanumeric,
alphabetic, numeric, or numeric-edited data, as shown in the table under Usage.

NULL
Removes a record-specific PICTURE clause from the named record element.

BUILT
Creates an alphanumeric display PICTURE clause for the requested group record
element. The DDDL compiler deletes the subordinate elements from the group
description and uses the combined lengths of all subordinate elements in the group
to form the group picture.

USAgeis
Specifies a record-specific USAGE clause for the named record element.

DI Splay
Alphabetic, alphanumeric, zoned decimal, edited, or display floating point
COMPUTATIONAL

Binary; COMP, COMPUTATIONAL-4, COMP-4, and BINary are synonyms for
COMPUTATIONAL.

COMPUTATIONAL-1
Short-precision floating point; COMP-1 and SHOrt-point are synonyms for
COMPUTATIONAL-1.

COMPUTATIONAL-2
Long-precision floating point; COMP-2 and LONG-point are synonyms for
COMPUTATIONAL-2.

COMPUTATIONAL-3
Packed decimal; COMP-3 and PACked are synonyms for COMPUTATIONAL-3.

POl nter
Fullword address constant

BIT
Bit string definition

CONdition-name
COBOL level-88 item; the level number is generated by the DDDL compiler

REDefines
Specifies a record-specific REDEFINES clause for the named record element. A
redefined element (element-name or the element referenced by *) cannot include
an OCCURS clause; the element can, however, be subordinate to an element with
an OCCURS clause.

4-188 CA-IDMS IDD DDDL Reference

4.23 RECORD (REPORT/TRANSACTION)

element-name
Identifies the element being redefined. The specified element must be at the same
level as the element that is the object of the RECORD ELEMENT substatement
and must immediately precede that element in the record-element structure.

Instructs the DDDL compiler to automatically redefine the previous element at the
same level in the record-element structure. The user need not specify the element
name.

NULI
Removes a previously established REDEFINES clause.

VALue igare ALL initial-value/condition-value THRu ALL condition-value
Specifies a record-specific VALUE clause for the named record element.
Initial-value/condition-value specifies a value, range of values, or alist of values
assigned to a COBOL level-88 condition name. A list of values must be enclosed
in parentheses. Each value in the list must be separated from the next by a space
or acomma. The value must be a figurative constant, a numeric literal, or an
aphanumeric literal enclosed in quotation marks; alphanumeric literals cannot
exceed 32 characters.

The optional THRU parameter is valid only with COBOL condition names
(level-88 items). To specify a new value for a new or existing record element,
first issue an EXCLUDE ALL VALUES clause. Note that if the SET OPTIONS
statement specifies DECIMAL-POINT IS COMMA and the VALUE clause
specifies a numeric literal, periods (.) are interpreted as insertion characters and
commas (,) are interpreted as decimal points.

EXClude ALL VALues
Removes all VALUE clauses associated with the named record element. This
clause is required to remove existing values.

OCCurs
Specifies a record-specific OCCURS clause for the named record element.

occurrence-count times
Specifies the number of times the element can occur within the record.
Occurrence-count must be an integer in the range 0 through 32,767.

occurrence-count times/0 TO occurrence-count times DEPending on
control-element-name
Defines a control element within the record, that determines the actual number of
times the element will occur. Occurrence-count must be an integer in the range 1
through 32,767. Control-element-name specifies a previously defined field in the
record; this field must be a halfword or fullword binary item if the record is to be
used in a schema or by CA-ADS.

NULL
Removes an existing OCCURS clause.

Chapter 4. Entity-Type Syntax 4-189

4.23 RECORD (REPORT/TRANSACTION)

INDexed by
Specifies one or more INDEXED BY clauses for the named multiply-occurring
record element or record-element synonym, or removes an existing INDEXED BY
clause.

This clause applies only to records used in COBOL programs and can be specified
once for each record element, subordinate element, and record synonym associated
with the element. Each specified index is prefixed or suffixed for each record
synonym associated with the record element.

Note: Within one INDEXED BY clause, the user can specify either a
multiply-occurring record element or a record-element synonym (the clause
cannot contain both elements and synonyms).

index-el ement-name
Specifies a 1- through 32-character index name that cannot duplicate an element
or element-synonym name in the record.

NULI
Removes an existing INDEXED BY clause.

FOR RECord synonym record-synonym is index-element-name/NUL |
Specifies an INDEXED BY name for a record synonym associated with the record
element.

Index-element-name is a 1- through 32-character index name that must not
duplicate the name of an existing element or element synonym in the record.
Multiple index names must be enclosed in parentheses and separated by blanks.
The COBOL precompiler copies the specified index names into the program's
DATA DIVISION as part of the COPY IDMS function.

NULI removes an existing INDEXED BY clause.

INDex KEY is
Specifies one or more record-specified index keys for a multiply-occurring group
record element or a subordinate record element. The INDEX KEY clause applies
only to records used in COBOL programs. Only one INDEX KEY clause can be
specified for each record element or subordinate element.

index-element-name
Identifies an elementary element that is subordinate to the associated element.
Index-el ement-name must be the primary name of the subordinate element; it
cannot be a synonym. The specified element name is appended with a prefix or
suffix assigned to the record synonym associated with the element.

ASCending/DEScending
Specifies the order of the subordinate elements within the multiply-occurring
element.

NULI
Removes an existing INDEX KEY clause.

SYNC/NO SYNC
Determines whether boundary alignment is to be defined for the named record
element. The correct alignment is determined by the USAGE specification. If the

4-190 CA-IDMS IDD DDDL Reference

4.23 RECORD (REPORT/TRANSACTION)

element's usage is COMP or COMP-4, the DDDL compiler issues a warning
message when the element is not on the proper boundary alignment. This clause
is documentational only, unless the COBOL precompiler is used to copy the
record; in this case, the specified boundary alignment will be applied by the
COBOL precompiler. If the record element is copied into a schema, it causes a
critical schema error.

JUStify is
Supplies a justification specification for the named record element. The JUSTIFY
clause applies only to records used in COBOL programs.

ON
Specifies that a COBOL JUSTIFIED clause is to be generated.

OFF
Specifies that a COBOL JUSTIFIED clause is not to be generated.

BLANk when ZERo is
Supplies a BLANK WHEN ZERO specification for the named record element.

ON
Specifies that blanks are automatically placed in the element when it contains all
ZEroes.
OFF
Specifies that the element’s value will not be changed when it contains all zeroes.
SIGn is

Specifies whether the sign is to be removed from a numeric field or whether it is
to appear in the leading or trailing position.

NULI
Removes existing sign specifications (for signed DISPLAY numeric fields only).

LEAding/TRAIling
Places the sign in the leading or trailing position. If SEPARATE CHARACTER
is specified, the sign will appear as a separate byte.

EDIt VALid/INValid TABleis
Specifies whether edit table values are to be listed, inserted, or removed (for
DC/UCF tables only).

LISt
Edit table values in the dictionary are listed on the Integrated Data Dictionary
Activity List or in the online IDD work file.

value THRu value
Inserts (INCLUDE) or removes (EXCLUDE) single values or ranges of values in
the edit table. Each value can have a maximum size of 34 characters. The
specified values must be enclosed in parentheses; for example:
(*A" 'C' 'F' 'H' 'R' THRU 'Z')

NULI
All values are removed from the table.

Chapter 4. Entity-Type Syntax 4-191

4.23 RECORD (REPORT/TRANSACTION)

VALid/INValid
Specifies whether the edit table contains a list of valid or invalid values; the
default is VALID.

CODe TABIe s
Specifies whether code table values are to be listed, inserted, or removed (for
(DC/UCF tables only). For the rules for defining the values for edit and code
tables, refer to the CA-IDMS Mapping Facility.

LISt
Specifies that code table values that are in the dictionary are to be listed in pairs.
The first value is the encoded value; the second value is the decoded value.

encode-value decode-value
Specifies that pairs of values are inserted in the table. The first or encoded value
can have a maximum size of 34 characters; the second or decoded vaue can have
a maximum of 64 characters. Null values (") and the keywords NOT FOUND are
also valid. The specified values must be enclosed in parentheses.

NULI
Specifies that all values are removed from the table.

EXTernal PICtureis picture/NULI
Defines the display format for record-element data (picture) or removes an
existing external picture specification (NULL). The picture is available to all map
fields that use the record element. For the rules for defining external pictures,
refer to the CA-IDMS Mapping Facility.

Usage: RECORD ELEMENT considerations

The following considerations apply to the RECORD ELEMENT substatement:

A record element can have a maximum length of 32,767 characters.
= Any number of record elements can be associated with one record.

® Clausesin a RECORD ELEMENT substatement request the DDDL compiler to
change the record-element structure; the element definition in the dictionary
remains unchanged.

= When MODIFY RECORD is specified and the named element exists, the DDDL
compiler modifies only those portions of the record element definition that are
referenced by RECORD ELEMENT substatement clauses.

= When the requested record element is not in the record, the DDDL compiler adds
the definition to the end of the record.

» When a RECORD ELEMENT substatement names a group element, the DDDL
compiler automatically copies al of the group's subordinate elements into the
definition.

» The RECORD ELEMENT substatement does not build
group-to-subordinate-element relationships. These relationships must be

established using ELEMENT entity statements (see 4.6, “ELEMENT” on
page 4-25, earlier in this chapter.

4-192 CA-IDMS IDD DDDL Reference

4.23 RECORD (REPORT/TRANSACTION)

RECORD ELEMENT statements are used to define record elements as tables that
are used by the DC/UCF mapping facility for automatic editing and error
handling. Tables defined by means of the RECORD ELEMENT substatement are
called built-in tables.

The TABLE statement (see 4.26, “TABLE” on page 4-216, later in this chapter)
is used to define stand-alone tables. For a complete description of built-in and
stand-alone tables, refer to the CA-IDMS Mapping Facility.

Adding a filler field to a record-element structure

To add afiller field to a record-element structure, specify RECORD ELEMENT IS
'FIL nnnn'. Nnnn is a 4-digit value that represents the number of characters of filler;
the specified value must be separated from the keyword FIL by one blank and must
contain leading zeros, if appropriate. For example, to generate the filler described as
FILLER PIC X(7), specify RECORD ELEMENT 'FIL 0007

If you specify REPLACE

The following considerations apply to the REPLACE option:

If REPLACE RECORD ELEMENT is specified with no optional clauses, the
DDDL compiler removes and rebuilds the definition of the named record element
from the current ELEMENT definition. Any record-specific modifications that
have been made to the named element must be respecified; record-specific
modifications for each subordinate element in a group must also be respecified.

A record element that is replaced will be removed from any views in which it
participates. The replacement record element will not automatically be included in
any views.

If REPLACE is specified with a line number, the DDDL compiler replaces the
contents of the specified line number, whether or not the record element at that
line has the same name as the element named in the REPLACE statement.

Note: For information about using the REPLACE command to modify
map-owned or schema-owned records, see the previous discussion under
4.23.1, “RECORD statement” on page 4-164.

SUBORDINATE ELEMENT considerations

The following considerations apply to the SUBORDINATE ELEMENT clause:

If no RECORD ELEMENT substatement has been specified, the search for the
SUBORDINATE ELEMENT starts at the beginning of the record.

A SUBORDINATE ELEMENT substatement cannot reference an element at the
highest level in the record. Use the RECORD ELEMENT substatement to
reference the highest level.

Only one subordinate element can be referenced in each SUBORDINATE
ELEMENT substatement.

Chapter 4. Entity-Type Syntax 4-193

4.23 RECORD (REPORT/TRANSACTION)

= Multiple SUBORDINATE ELEMENT substatements must be specified in the
order that the record elements appear within the group or within the record if no
RECORD ELEMENT substatement has been specified.

» Each RECORD ELEMENT substatement that references a group element can be
followed by one SUBORDINATE ELEMENT substatement for each subordinate
element within the named group, and one or more of the optional clauses
described below.

Specifying a picture variable

Picture must be a 1- through 30-character value that describes the types of data shown
in the following table.

Category Character Description
Alphanumeric X Represents one aphanumeric character. |If
data USAGE IS BIT, X represents one hit; the
USAGE clause is described in the parameters list.
(n) Represents n repetitions of the alphanumeric
: character; for example, X(4) is equivaent to
;Ar\]n Integer XXXX.
parentheses
after an X
Alphabetic A Represents one alphabetic character (A-Z).
data
(n) Represents n repetitions of the alphabetic
. character
An integer
in
parentheses
after an A
Numeric data 9 Represents one numeric character.
(n) Represents n repetitions of the numeric character.
An integer
in
parentheses
after a9
\% Represents an assumed decimal point. No more

than one V can appear in an element picture. If
the V is omitted and the P option (described
below) is not used, the assumed decimal point is
after the rightmost 9.

4-194 CA-IDMS IDD DDDL Reference

4.23 RECORD (REPORT/TRANSACTION)

Category Character Description
P Represents an assumed zero. Any number of Ps
can appear in the leftmost or the rightmost
positions of an element picture. An assumed
decimal point is automatically placed before the
first P or after the last P. The character P does
not occupy a storage position (for example,
PP9999 has a data length of 4).
S Identifies the number as positive or negative.
When used, the S must be the first character in
the element picture. When the S is omitted,
values for the element description are assumed to
be positive.
Numeric- A Represent edit symbols used in reporting data;
edited data * guotation marks are not required. Refer to the
(Includes the f; gpprqpriarrg programmi ng language manual for the
numeric data CR individual interpretations of these symbols.
characters - If the SET OPTIONS statement specifies
described above, pp DECIMAL-POINT IS COMMA, a period (.) is
aong with the * interpreted as an insertion character and a comma
editing $ (,) isinterpreted as a decimal point.
characters .
shown at the
right)

Examples: The following example shows the creation of the record
PARTS-RECORD using the RECORD ELEMENT substatement. The statement:

» Defines the record PARTS-RECORD with a language of COBOL, an aternative
format of DISPLAY, and an occurrence count of 20,000

1 Uses RECORD NAME SYNONYM to define the record synonym ST3PARTS for
use with Assembler, and relate the synonym to the file synonym STK3FIL

® Uses RECORD ELEMENT substatements to add:
— Two elementary elements — PARTNUMBER and DESIGN-DATE
— Two group elements — INVENTORY-DATA and INVENTORY-DATE

add record parts-record

record storage is database

language is cobol

format is display

occurrences are 20000

record name synonym is st3parts for file synonym
stk3fil language is assembler.

record element partnumber.
record element design-date.

record element inventory-data.
record element inventory-date.

Chapter 4. Entity-Type Syntax 4-195

4.23 RECORD (REPORT/TRANSACTION)

The following MODIFY statement:
» Changes the record storage and occurrence specifications
® |nserts a new element, HISTORY, that redefines INVENTORY-DATA

® |dentifies synonyms for the various record elements and their subordinate elements

modify record parts-record

record storage is file
occurrences are 80000.
record element history Tine 810 redefines inventory-data
element name synonym hstry for record st3parts.
subordinate element discontinue-date

element name synonym dscdt for record st3parts.
subordinate element discontinue-month

element name synonym dscmo for record st3parts.
subordinate element discontinue-day

element name synonym dscdy for record st3parts.
subordinate element discontinue-year

element name synonym dscyr for record st3parts.
subordinate element lower-limit

element name synonym lowlt for record st3parts.
subordinate element quantity-on-hand

element name synonym qtyhld for record st3parts.
record element partnumber

element name synonym partno for record st3parts.
record element design-date

element name synonym dsndt for record st3parts.
record element inventory-data

element
subordinate
element
subordinate
element
subordinate
element
subordinate
element

name synonym invdata for record st3parts.
element in-process

name synonym nrproc for record st3parts.
element quantityl

name synonym quone for record st3parts.
element quantity?2

name synonym qutwo for record st3parts.
element quantity3

name synonym quthree for record st3parts.

4.23.3 COBOL substatement

The COBOL substatement creates a record-element structure using an approximation
of standard COBOL syntax. Elements named in COBOL substatements need not exist

in the dictionary.

Syntax: COBOL element substatement

4-196 CA-IDMS IDD DDDL Reference

4.23 RECORD (REPORT/TRANSACTION)

\4

»»—— Jevel-number element-name

< >
<

L REDefines base-element-name]

A

’— PICture is picture —J

[
| >
v >

VALue is
VALues are J |— ALL J

A\

—m—[initial-value |
(condition-value I L) J
THRu _ﬁ condition-value
ALL

\4

L USAge is —— DISplay ¢« 1
—— COMPUTATIONAL
— COMP
— COMPUTATIONAL-4 —
— COMP-4
— BINary
—— COMPUTATIONAL-1
— COMP-1
— SHOrt-point ——
—— COMPUTATIONAL-2
— COMP-2
— LONg-point
—— COMPUTATIONAL-3
— COMP-3
— PACked
— POInter
— BIT
— CONdition-name

[

»
»

|
L ELement name SYNonym is element-synonym

| FOR RECord synonym record-synonym

L

HIGhest
LOWest

I Version is { version-number —

Chapter 4. Entity-Type Syntax 4-197

4.23 RECORD (REPORT/TRANSACTION)

A

v

JUStify ___|— right il
LE JUStified

A

L BLAnk when ZERo i

A

v

|
dL SEParate character J

L SIGn is LEAding
—E TRAiTing

A

A

L 0CCurs

>

occurrence-count times
E occurrence-count times DEPending on control-element-name
0 TO occurrence-count times DEPending on control-element-name —

T
(—l— index-element-name 1)
FOR RECord synonym record-synonym-specification —

L INDexed by —E index-element-name

(expanded record-synonym-specification syntax follows this syntax diagram)

L INDex KEY is index-element-name T ASCending]
DEScending

|
I\— index-element-name —[ASCending j—LL—J»
(DEScending)

\ 4

L[ASCending —_I— key is index-element-name
DESCGnd]ng 4|: I J_
(—4— index-element-name)

A

v

L L,

[
EDIt —|: VALid « :l— TABle is (—{— value

INValid | THRu value J

[
|
v

A\

v

. O 1,
CODe TABle is (—— encode-value decode-value)

4-198 CA-IDMS IDD DDDL Reference

4.23 RECORD (REPORT/TRANSACTION)

\4

<
<

L EXTernal PICture is picture]

| |
. |
—i— edit-instruction 1 QUIT

\4

\4

L— EDIt COMments
DEFinition
0LQ header
CULprit header -

comment-key —

\4

COMments
DEFinition
0LQ header
CULprit header —
comment-key

— is NUL1
_I: comment-text

Expansion of record-synonym-specification

L record-synonym-name

L— Version is —{ version-number ———J

HIGhest
LOWest
— is —|: index-element-name —J—‘
|
(—V— index-element-name L)
Parameters

level-number element-name
Specifies the level number and name of the COBOL element. Level-n must be an
unsigned integer in the range 02 through 49, or 88. Note that the 01-level name is
the record name itself or a synonym. Element-name must be the 1- through
32-character name of the element. The specified name will be appended with a
prefix or suffix if any record synonyms associated with the record have been
assigned prefixes or suffixes.

REDefines base-element-name
Specifies an alternative description for a previously defined element. The
requested element is assigned the same storage space as base-element-name. Note
that a redefined element cannot be defined with an OCCURS clause; it can,
however, be subordinate to an element defined with an OCCURS clause.

PICtureis picture
Describes the format of the COBOL element. The maximum length of a COBOL
eement (including its usage) is 32,767 characters. Picture must be a 1- through
30-character value specified as shown in the table under Usage.

VALue is’VAL ues are initial-value/condition-value
Specifies a value, range of values, or a list of values assigned to a COBOL
level-88 condition-name. A list of values must be enclosed in parentheses. Each
value in the list must be separated from the next value by a space or comma. A
value can be a 1- through 32-character value specified as shown in the list under
the bold heading Usage.

Chapter 4. Entity-Type Syntax 4-199

4.23 RECORD (REPORT/TRANSACTION)

USAgeis
Specifies the method of storing elementary item values at program runtime.

DI Splay
Specifies that values are stored one character to a byte according to EBCDIC
conventions. DISPLAY is the default.

COMPUTATIONAL
Numeric values are stored in binary format; COMP, COMPUTATIONAL-4,
COMP-4, and BINary are synonyms for COMPUTATIONAL.

COMPUTATIONAL-1
Numeric values are stored in internal floating point (short precision) format;
COMP-1 and SHOrt-point are synonyms for COMPUTATIONAL-1.

COMPUTATIONAL-2
Numeric values are stored in internal floating point (long precision) format.
COMP-2 and LONg-point are synonyms for COMPUTATIONAL-2.

COMPUTATIONAL-3
Numeric values are stored in packed decimal format; COMP-3 and PACked are
synonyms for COMPUTATIONAL-3.

BIT
Values are stored one bit at atime as Os or 1s. BIT cannot be used in COBOL
programs.

POl nter
Fullword address constant.

CONdition-name
COBOL level-88 values. CONDITION-NAME is assumed if the level number
specified for the record element is 88.

EL ement name SYNonym is element-synonym
Establishes a synonym (aternative name) for the COBOL element.
Element-synonym is the 1- to 32-character synonym name. The specified name
will be appended with a prefix or suffix if a prefix or suffix has been defined for
the associated record-synonym name. This clause can be specified once for each
record synonym associated with the record.

FOR RECord synonym record-synonym
Associates the element synonym with the designated record synonym.

Note: If the FOR RECORD SYNONYM parameter is not specified, the
ELEMENT NAME SYNONYM clause applies only to the primary record
name.

JUStify right
Specifies that the COBOL element's value is to be right justified at runtime.
BLANk when ZERo

Specifies that when the COBOL element's values contains all zeroes it is to be
changed to spaces at runtime.

4-200 CA-IDMS IDD DDDL Reference

4.23 RECORD (REPORT/TRANSACTION)

SIGn is LEAding/TRAIling
Specifies whether the sign for a numeric field is to appear in the leading or
trailing position.

SEParate character
Specifies that the sign is to appear as a separate byte.

SYNChronized LEFt/RIGht
Determines whether boundary alignment is to be defined for the named COBOL
element. The correct aignment is determined by the USAGE specification. If the
element's usage is COMP or COMP-4, the DDDL compiler issues a warning
message if the element is not on the proper boundary alignment. This clause is
documentational only, unless the DMLC precompiler is used to copy the record; in
this case, the specified boundary alignment will be applied by the COBOL
compiler. If the COBOL element is copied into a schema, it causes a critical
schema error.

OCCurs
Specifies a record-specific OCCURS clause for the named COBOL element.

occurrence-count times
Specifies the number of times the element can occur within the record.
Occurrence-count must be an integer in the range 0 through 32,767.

occurrence-count times/0 TO occurrence-count times DEPending on
control-element-name
Defines a control element within the record that determines the actual number of
times the COBOL element will occur. Occurrence-count must be an integer in the
range 1 through 32,767. Control-element-name specifies a previously defined field
in the record; this field must be a halfword or fullword binary item if the record is
to be used in a schema or by CA-ADS.

INDexed by
Specifies one or more indexes for a multiply-occurring element or for a record
synonym associated with the named COBOL element.

The INDEXED BY clause can be specified once for each record element or
subordinate element and record synonym; the index element name is appended
with a prefix or suffix as appropriate. The INDEXED BY clause applies only to
records used in COBOL programs and should be specified only when the named
element definition contain on OCCURS or OCCURS DEPENDING ON clause.
The specified index name is copied into the program's DATA DIVISION by the
DMLC precompiler as part of the COPY IDMS function.

index-element-name
Specifies an INDEXED BY name for the named COBOL element. The specified
value must be a 1- through 32-character name that does not duplicate an existing
element or element-synonym name.

FOR REcord synonym record-synonym is index-el ement-name
Specifies an INDEXED BY name for a record synonym associated with the record
element. Index-element-name is a 1- through 32-character name that cannot
duplicate an element or element-synonym name in the record.

Chapter 4. Entity-Type Syntax 4-201

4.23 RECORD (REPORT/TRANSACTION)

INDex KEY is
Specifies one or more index keys through one of the following options; note that
each option is functionally the same.

INDex KEY is index-element-name ASCending/DEScending
Specifies a record-specific index key for the record element or subordinate record
element. Index-element-name identifies an elementary element that is subordinate
to the associated element and must be the primary name of the record element.
ASCENDING or DESCENDING specifies the manner in which the subordinate
element values will be ordered within the multiply-occurring group.

ASCending/DEScending key is index-element-name
Specifies one or more record-specific index keys for the multiply-occurring group
element or subordinate element and defines the manner in which subordinate
element values will be ordered within the multiply-occurring group.
Index-el ement-name must be the primary name of an element that is subordinate to
the named group element. The named element and the
ASCENDING/DESCENDING specification govern the ordering of values of the
subordinate element within the multiply-occurring group. Each index element
name is prefixed or suffixed for each record synonym associated with the element.

EDIt VALid/INValid TABIe is value THRu value
Specifies a single value or range of values to be inserted in the edit table (for
(DC/UCF tables only). Each value can have a maximum size of 34 characters and
must be enclosed in parentheses; for example:
('A' 'B' 'D' 'F' 'R' THRU 'T' 'V' 'X' THRU 'Z')

VALid/INValid

Identifies the supplied list as a list of valid values or a list of invalid values. The
default is VALID.

CODe TABIe is encode-value decode-value
Specifies values to be inserted in the table in pairs (for DC/UCF tables only). The
first or encoded value can have a maximum size of 34 characters; the second or
decoded value can have a maximum of 64 characters. Null values (") and the
keywords NOT FOUND are aso valid. The specified values must be enclosed in
parentheses. For example:

("CA' 'CALIFORNIA' 'NY' 'NEW YORK')

For detailed information about defining code tables, refer to the CA-IDMS
Mapping Facility manual.

EXTernal PICtureis picture
Defines the display format for record-element data. The picture is available to all
map fields that use the record element. For more information about external
pictures, refer to the CA-IDMS Mapping Facility manual.

Usage: COBOL substatement considerations

The following considerations apply to the COBOL substatement:

» The named record element is validated against elements in the dictionary, as
follows:

4-202 CA-IDMS IDD DDDL Reference

4.23 RECORD (REPORT/TRANSACTION)

— If identical primary or synonym names are found, the DDDL compiler
examines each element for identical PICTURE, USAGE, BLANK WHEN
ZERO, JUSTIFY, and SIGN specifications, and for identical group structures
(if any); level-88 elements are also examined. If the definition of the named
COBOL eement matches the definition of an existing e ement, the DDDL
compiler copies the definition of the existing element into the named record.
If the two elements have matching names only, a new element is added to the
dictionary and is automatically assigned the highest existing version number
plus 1.

Note: Differences in the entry formats for COBOL PIC are resolved (for
example, pic x(2) is recognized as equivalent to pic xx).

— If identical primary or synonym names are not found, a new element is added
to the dictionary and automatically assigned a version number of 1.

» Elementary fillers are treated the same way as elementary elements. If the
PICTURE, USAGE, BLANK WHEN ZERO, JUSTIFY, and SIGN specifications
match those associated with an existing filler, that filler is used; otherwise, a new
filler is added to the dictionary. Note that when afiller with a VALUE clause is
copied into the record-element structure, the value itself is not copied; rather, a
value of NO VALUES is assigned to the filler.

» Fillers can be group elements; in this case, the rules for forming group elements
apply.
® COBOL substatements are used to define record elements as tables that are used

by the DC/UCF mapping facility for automatic editing and error handling. Tables
defined by means of the COBOL substatement are called built-in tables.

The TABLE statement (described under 4.26, “TABLE” on page 4-216, later in
this chapter) is used to define stand-alone tables. For a complete description of
built-in and stand-alone tables, refer to the CA-IDMS Mapping Facility.

Specifying a picture variable

Picture must be a 1- through 30-character value that describes the types of data shown
in the following table.

Category Character Description
Alphanumeric X Represents one alphanumeric character. If
data USAGE IS BIT, X represents one hit; the
USAGE clause is described in the parameters list.
(n) Represents n repetitions of the alphanumeric
. character; for example, X(4) is equivalent to
;Ar\]n integer KXXX.
parentheses
after an X
Alphabetic A Represents one alphabetic character (A-Z).

data

Chapter 4. Entity-Type Syntax 4-203

4.23 RECORD (REPORT/TRANSACTION)

Category Character Description
(n) Represents n repetitions of the alphabetic
. character

An integer

in

parentheses

after an A

Numeric data 9 Represents one numeric character.

(n) Represents n repetitions of the numeric character.

An integer

in

parentheses

after a9

Y Represents an assumed decima point. No more
than one V can appear in an element picture. If
the V is omitted and the P option (described
below) is not used, the assumed decimal point is
after the rightmost 9.

P Represents an assumed zero. Any number of Ps
can appear in the leftmost or the rightmost
positions of an element picture. An assumed
decimal point is automatically placed before the
first P or after the last P. The character P does
not occupy a storage position (for example,
PP9999 has a data length of 4).

S Identifies the number as positive or negative.
When used, the S must be the first character in
the element picture. When the S is omitted,
values for the element description are assumed to
be positive.

Numeric- z Represent edit symbols used in reporting data;
edited data * guotation marks are not required. Refer to the
(Includes the é gpprqpriate_ programmi ng language manual for the
numeric data CR individual interpretations of these symbols.
characters - If the SET OPTIONS statement specifies
described above, g DECIMAL-POINT IS COMMA, a period (.) is
along with the * interpreted as an insertion character and a comma
editing $ (,) is interpreted as a decimal point.

characters .

shown at the

right)

Valid values for the VAL UE clause

4-204 CA-IDMS IDD DDDL Reference

4.23 RECORD (REPORT/TRANSACTION)

Valid types of values for the VALUE clause are as follows:

» Figurative constant — For alphanumeric and numeric data items, ZERO,
ZERQOS, ZEROES. For aphanumeric data items only: SPACE, SPACES,
HIGH-VALUE, HIGH-VALUES, LOW-VALUE, LOW-VALUES.

®» Nonnumeric literal — For alphanumeric data items only, a string of characters
enclosed in single quotation marks. The character string must not exceed the size
specified in the element's PICTURE clause.

. Numeric literal — For numeric items only, a string of numeric characters,
optionally preceded by a plus (default value) or minus sign and optionally
containing a decimal point. The numeric string must not exceed the size of the
data item as defined in the PICTURE clause.

4.23.4 REMOVE ALL substatement

The REMOVE ALL substatement is used in conjunction with an ADD RECORD or
MODIFY RECORD statement to delete the record-element structure associated with
the named record. You can create a new record-element structure by coding RECORD
ELEMENT substatements immediately following the REMOVE ALL substatement; the
rules for ADD RECORD apply. REMOVE ALL also removes any IDD-built
subschema views (see 4.23.5, “VIEW ID substatement” below).

Syntax: REMOVE ALL substatement

\ 4
A

»»—— REMove ALL

4.23.5 VIEW ID substatement

The VIEW ID substatement establishes or removes a view of record elements. Once
established, this view can be copied into one or more CA-IDMS subschemas. Before
issuing a VIEW ID substatement, you should ensure that all record elements identified
in the view are present in the record. The following rules apply to the VIEW 1D
substatement:

. VIEW ID must be the last substatement coded in the RECORD statement.
® Record elements named in the view must be identified by their primary names.
® All record elements named in the view must be at the same level.

A record element that is subordinate to an OCCURS clause cannot be included in
the view.

» A REDEFINES element cannot be included in the view. If aredefined element is
included, all redefining elements are automatically included in the view.

= An OCCURS DEPENDING ON record element must be the last record element in
the view.

® Bit fields cannot be named.

A record element can be named only once.

Chapter 4. Entity-Type Syntax 4-205

4.23 RECORD (REPORT/TRANSACTION)

® |f agroup element is included, al subordinate elements are automatically included
in the view. The order of group/subordinate record elements is retained.

Syntax: VIEW ID substatement

I
»»— VIEw ID is view-identifier
|— REMove J

\ 4

> |

' 1
LI,— RECord ELement is record-element-name

\ 4
A

Parameters:

VIEw ID is view-identifier
Identifies a list of record elements that is to comprise a view. View-identifier must
be a 1- through 32-character alphanumeric value. The VIEW ID substatement can
appear any number of times in one RECORD statement. If the optional
REMOVE parameter is specified, the named view is deleted.

RECord ELement is record-element-name
Identifies a record element to be added to the view. Record-element-name must
be an element that exists in the named record-element structure. This clause can
appear any number of times in one VIEW ID substatement.

4-206 CA-IDMS IDD DDDL Reference

4.24 RECORD SYNONYM

4.24 RECORD SYNONYM

You can display or punch selected record synonyms by using the DISPLAY/PUNCH
RECORD SYNONYM statement.

Syntax: DISPLAY/PUNCH RECORD SYNONYM statement

(for a single synonym)

>>—I: DISplay RECord
PUNch ——,_E REPort
TRAnsaction —

— SYNonym record-synonym >

A

HIGhest
LOWest

L Version is —{E version-

number-———|

A

\4

[

L PREpared by user-id

L PASsword is password]

A\

v

WITh v
ALSo WITh :{ —
WITHOut —

ALL
ATTributes —
DETails
ELEments —
FILes
MAPs
NONe
PROgrams

SCHemas
SUBSChemas —

\ 4

<
<

L TO SYS
ch
T woon

MODule module-name

L— Version is —{E version-number ———J

HIGhest
LOWest

v

\

|

| LANguage is language I PREpared by user-id

L PASsword is password]

A

l— AS —|: SYNtax j—l
COMments

A\
A

DISPLAY/PUNCH RECORD SYNONYM statement

(for multiple synonyms)

Chapter 4. Entity-Type Syntax 4-207

4.24 RECORD SYNONYM

»—— DISplay

ALL
FIRst 1«
NEXt L— entity-count —J
LASt
PRIor

| RECord SYNonyms ———»

A

L PREpared by user-id

|
L PASsword is password il

A

L WHEre conditional-expression _

(for complete conditional-expression syntax, see WHERE clause in Chapter 3)

T
BY _I:

SET (';I'J
AREa

v

\ 4

A

LTO—[

SYSpch

MODuTe module-name

HIGhest
LOWest

L— Version is _{E version-number ———J

L LANguage is language 11 PREpared by user-id

[

| PASsword is password]

\ 4

A

A

L
AS T

SYNtax
COMment

T

4-208 CA-IDMS IDD DDDL Reference

4.25 SYSTEM (SUBSYSTEM)

4.25 SYSTEM (SUBSYSTEM)

SYSTEM statements are used to document automated or manual data processing
systems. Optiona clauses relate systems to users and to other systems and support
attribute/entity relationships and documentational entries.

Note: It is recommended that you maintain SY STEM definitions using the system
generation compiler, not the DDDL compiler. If a system generation
component is processed by the DDDL compiler, only dictionary security is
checked, not system generation security. For more information on using the
system generation compiler, refer to CA-IDMS System Generation.

Note: The keyword SUBSY STEM can be used interchangeably with the keyword
SYSTEM.

If the SET OPTIONS statement specifies SECURITY FOR IDD IS ON, the user must
be assigned the proper authority to issue SYSTEM statements. Note that DDDL
statements cannot be used to delete systems built by the system generation compiler.

Syntax: SYSTEM (SUBSYSTEM) statement

Chapter 4. Entity-Type Syntax 4-209

4.25 SYSTEM (SUBSYSTEM)

> ADD SYStem —_I— name is system-name >
MODi fy SUBSYstem
REPTace
DELete

A
v

|— Version is version-number
Em—[HIGhest
NEXt LOWest

L[PREpared by user-id
REVised I

A
4

| -

L PASsword is password i

I

»—J
| SAMe as I SYStem _I system-name [|
SUBSYstem Version is -E version-number —

v

L

HIGhest
LOWest

»— >

I
|
o |— COPY —— ALL COMment TYPes —— FROm SYStem —_I— y —V
system-name
COMments ———— —[SUBSYstem
DEFinition
— ATTributes
— USErs
— MODuTes
— PROgrams ———
SYStems —__Ii
—E SUBSYtems
— WIThin SYStem
— WIThin SUBSYstem ——
— comment-key
— relational-key

I

|— Version is version-number —J
—E HIGhest —————
LOWest

L NEW NAMe is new-system-name L
Version is —[version-number
NEXt —E HIGhest

LOWest
ersion is new-version-number
L NEW Versi i _I: i b
NEXt _T: HIGhest
LOWest

A

v

A
v

4-210 CA-IDMS IDD DDDL Reference

4.25 SYSTEM (SUBSYSTEM)

\4

l DEScription is description-text _
t system
subsystem —
o i I
L_I: INClude « USEr is user-id
EXClude ——:I_ L user-specification il
(for complete user-specification syntax, see USER clause in Chapter 3)
L PUBTic access is _I:_________:I_ for ALL « _ 1
ALLOwed NONe
UPDate —
MODify —
REPTace —
DELete —
DISplay —
— >
L—I: INClude « WIThin SYStem ___:I_ system-name
EXClude ——::I_ _T: SUBSYstem

\
4

L— Version is version-number ———J L TEXt is user-text _
_[E HIGhest
LOWest

' |
»— »

INClude <« class-name is attribute-name |
EXClude ——:I_ L TEXt is user-text —J
— >
L_I: INClude « relational-key is system-name
EXClude —_I_

\ 4
v

HIGhest
LOWest

L— Version is _{E version-number ————J L— TEXt is user-text —J

' |

»—| L
. |
EDIt COMments V— edit-instruction 1 QuUIT
—E DEFinition ;'
comment-ke

comment-key

v

»—

I

|
COMments is _I: NUL1
DEFinition comment-text

comment-key

DISPLAY/PUNCH SYSTEM (SUBSYSTEM) statement

Chapter 4. Entity-Type Syntax 4-211

4.25 SYSTEM (SUBSYSTEM)

(for a single system)

»—[DISplay SYStem —T name is system-name
PUNch T L SUBSYstem

v

HIGhest
LOWest

|— Version is —E version-number —J

L PREpared by user-id C] |
PASsword is password

v

I

WITh b ALL |
ALSo WITh — ALL COMment TYPes
WITHOut — ATTributes

— COMments
— DEFinitions
— DEStinations
— DETails
— HIStory
— LINes

—E LOGical-terminals]—
LTErms
— MAPs

— MODules
L ONLy —J
— NONe
PHYsical-terminals j_
—E PTErms
— PROCesses ——————

— PROgrams
— SAMe AS
SYStems —__Ii
—E SUBSYstems
— TASks
— QFIles
— QUEues
— TABles
— USErs

USEr DEFINED COMments
—E UDCs T

USEr DEFINED NESts
—E UDNs ——,—
— WHEre USED —————

— WITHIn SYStem —__l_
—E SUBSYstem

v

L 1o

\ 4

SYSpch
_I: MODuTe module-name

HIGhest
LOWest

|— Version is —E version-number —

4-212 CA-IDMS IDD DDDL Reference

4.25 SYSTEM (SUBSYSTEM)

\ 4
\4

| LANguage is language 11 PREpared by user-id [N
PASsword is password

L VERB DISplay L AS —I: SYNtax ——:]—J
PUNch COMments
ADD
MODi fy
REPTace
DELete

A

DISPLAY/PUNCH SYSTEM (SUBSYSTEM) statement

(for multiple systems)

>>—I: DISp]a ALL T SYStems ———:]——————————>
PUNch FIRst L_ _J SUBSYstems

NEXt :‘1 nt1t -count

LASt
PRIor

v

A

L PREpared by user-id B N |
PASsword is password

v

A

L WHEre conditional-expression _

(for complete conditional-expression syntax, see WHERE clause in Chapter 3)
LBY—[SETGJ—‘
AREa

L TO SYS
ch
T vorr

MODule module-name

v

\ 4

A

HIGhest
LOWest

|— Version is —E version-number ——]

v

\

|

| LANguage is language I PREpared by user-id []
PASsword is password

A

L VERB DISplay L AS _I: SYNtax ——:j—J
PUNch COMments
ADD
MODi fy
REPlace
DELete
Parameters

Chapter 4. Entity-Type Syntax 4-213

4.25 SYSTEM (SUBSYSTEM)

SY Stem/SUBSY stem name is system-name
Identifies a new system to be established in the dictionary, or an existing system
to be modified, replaced, deleted, displayed, or punched. System-name must be a
1- through 32-character alphanumeric value.

NEW NAMe is new-system-name
Specifies a new name for the requested system. This clause changes the name of
the requested system only; it does not alter or delete any relationships in which
the system participates. Subsequent references to the system must specify the new
name. The concatenation of the new system name and version number must not
duplicate that of an existing system occurrence. The NEW NAME clause is not
valid for systems created by the CA-IDMS/DC system generation compiler.

NEW Version is new-version-number/NEXt HIGhest/NEXt L OWest
Specifies a new version number for the named system. The combination of
system name and new version number must not duplicate that of an existing
system occurrence. The NEW VERSION clause is not valid for systems created
by the CA-IDMS/DC system generation compiler.

WIThin SYStem/SUBSY stem system-name
Associates (INCLUDE) the named system with or disassociates (EXCLUDE) it
from the the system/subsystem identified by the 1- through 32-character
system-name.

WITh/ALSo WITh/WITHOut
Includes or excludes the specified options when the named system is displayed or
punched. Detailed information for each DISPLAY/PUNCH option is under 2.4.2,
“SET OPTIONS syntax” on page 2-9. The options that are listed below present
special considerations for this entity type.

DETails
Includes the DESCRIPTION specification.

SY Stems (SUBSY stems)
Includes WITHIN SYSTEM specifications and user-defined nests.

Usage: If you specify REPLACE

If the REPLACE verb is specified, the DDDL compiler initializes to defaults and/or
excludes the following:

DESCRIPTION

USER REGISTERED FOR

PUBLIC ACCESS
COMMENTS/DEFINITIONS/comment-key
WITHIN SYSTEM/SUBSY STEM
ATTRIBUTES

The following relationships are not affected:

® Users assigned access to the named system

4-214 CA-IDMS IDD DDDL Reference

4.25 SYSTEM (SUBSYSTEM)

n CA-IDMS/DC definitions, destinations, lines, logical terminals, maps, programs,
physical terminals, queues, modules, tasks, and systems in which the named
system participates as a component

Example: The following ADD statement defines the system INVENTORY, relates
that system to two existing users and an existing system, and establishes two
documentational relationships by means of a clasg/attribute structure and a relational

key.

add system inventory
prepared by dba password is 'ice 9'
system description is 'present inventory system'
user is accounting
user is receiving
within system order-control
status is production
'similar system' is back-order.

This second ADD statement defines version 2 of the same system by copying the
definition of version 1 and removing copied options that are not applicable to the
proposed system. Note that the DDDL compiler generates a PREPARED BY entry for
the second system only if a SET OPTIONS statement has provided a default
PREPARED BY specification; use of the SAME AS option does not generate a
PREPARED BY or REVISED BY entry.

add system inventory version is 2
same as system inventory
exclude status is production
status is design
exclude 'similar system' is back-order
exclude within system order-control
system description is 'proposed inventory system'.

Chapter 4. Entity-Type Syntax 4-215

4.26 TABLE

4.26 TABLE

TABLE statements are used to document edit and code tables. Tables are used by the
CA-IDMS mapping facility for automatic editing and error handling. Optional TABLE
statement clauses relate tables to maps, users, systems, modules, and other tables;
establish attribute/entity relationships; and maintain documentational entries.

If the SET OPTIONS statement specifies SECURITY FOR IDD IS ON, the user must
be assigned the proper authority to issue TABLE statements.

Syntax: TABLE statement

4-216 CA-IDMS IDD DDDL Reference

4.26 TABLE

\4

ADD TABTe name is table-name
MODi fy
REPTace
DELete
|— Version is version-number
H HIGhest
NEXt LOWest

L LANguage is TABLE B] |
TEXt is user-text

A
4

A
4

A
4

L[PREpared by user-id |
REVised ——I_

L PASsword is password J

A
y

L SAMe as —[TABle table-name]
MODule module-name
HIGhest

I Version is —E version-number —J
LOWest

\ 4
\4

L LANguage is TABLE _

A
A\

L COPy —— ALL COMments TYPes —— FROm —[TABle table-name j_l
— COMments ——— MODule module-name

— DEFinition

— ATTributes

— SOUrce text

— SYStems

— USERS

— MODULes

— TABles

— comment-key

— relational-key

\ 4
\4

[

L Version is <E version-number 1L LANguage is TABLE]

HIGhest
LOWest
| NEW NAMe is new-table-name I Version is _I: version-number
NEXt —[HIGhest

LOWest

Chapter 4. Entity-Type Syntax 4-217

4.26 TABLE

v

A

|— NEW Version is —[new-version-number
NEXt —E HIGhest
LOWest

A

Lﬁ DEScription is description-text _
table

I

»—

<« —

L—[: INClude « USEr is user-id
EXCTude ——:I_ L user-specification |

(for complete user-specification syntax, see USER clause in Chapter 3)

v

]

L PUBTic access is —I:—————————:]— for ALL «
ALLOwed NONe

UPDate —
MODify —
REPTace —
DELete —
DISplay —

A

INClude <« WIThin SYStem ___:I_ system-name
EXClude ——::I_ _I: SUBSYstem

\ 4

HIGhest
LOWest

|
|— Version is —E version-number —J |— TEXt is user-text J

v

—
INClude « MODE ______:I is attribute-name
L[EXClude - class-name I TEXt is user-text]

INClude « relational-key is table-name
EXCTude ——I— —E module-name il

A\

\ 4

HIGhest

L Version is { version-number —J
LOWest

4-218 CA-IDMS IDD DDDL Reference

4.26 TABLE

| >

\

| "

L LANguage is TABLE JL TEXt is user-text —J

»—

T
»—| >
L—I: INCTude « MAP map-name

EXClude ——:I_

|

\ 4
v

|

HIGhest

L— Version is _{E version-number ———J L— TEXt is user-text —J
LOWest

I

»—
>

v

DEFinitio
comment-key

!
. |
L— EDIt —{E COMments ——:E]———l— edit-instruction L QUIT
n

[
|

I
COMments — is —I: NUL1 ————————:]—J
DEFinition — comment-text

comment-key —

L TYPe is EDIt
— VALid « :ﬁ
INValid

CODe

A\
v

A
4

A

L SEArch is _I: LINear <« |

BINary
|— ON —[ENCode :—‘
DECode

TABTe DATa 1is
ENCode }
DECode

A
y

\ 4
v

ALPhanumeric ¢«
NUMERIc

l

L DECimal position is _I: 0 « m
decimal-position-indicator

GRAphics

L TABle is —I: UNSor‘teii_j—J
SORted

A

Chapter 4. Entity-Type Syntax 4-219

4.26 TABLE

v

A

L DUPlicates are ALLowed <«
L
NOT ALLowed

\ 4

T
|
L[INClude VALues -[are LIST

EXClude is |
(V— value
—[L THRu value]
encode-value decode-value

J|)_

NULT

v
A

A

|— GENerate —J

DISPLAY/PUNCH TABLE (for a single table)

4-220 CA-IDMS IDD DDDL Reference

4.26 TABLE

>>—I: DISplay TABle name is table-name
PUNch T

\4

A

L Version is version-number ———J
_{E HIGhest

LOWest

v

A

L LANguage is TABLE _

\4

A

L PREpared by user-id

|

L PASsword is password]

v

»—
>

[
|
v

ALL |

ALSo WITh —
WITHOut —

USEr DEFINED COMments
Ly T|

USEr DEFINED NESts
Louows —————— T

ALL COMment TYPes
ATTributes

COMments
DEFinitions
DETails
HIStory
MAPs

MODules
L ONLy i

MODule SOUrce
NONe
PROCesses
PROgrams
QFIles
SAMe AS
SYStems —_Ii
SUBSYstems
TABles
USErs

DCs

WHEre USED

v

A

\ 4

L TO SYS
ch
T vorr

MODule module-name

HIGhest

LOWest

L— Version is _{E version-number —

[

l

| LANguage is language]

| PREpared by user-id

L PASsword is password —J

A

L VERB DISplay
PUNch
ADD
MODi fy
REPlace

DELete

|— AS —[SYNtax _‘I_‘
COMments

Chapter 4. Entity-Type Syntax 4-221

4.26 TABLE

DISPLAY/PUNCH TABLE (for multiple tables)

DISp]ay ALL | TABTes >
PUNch FIRst 1 « a

NEXt entity-count

LASt

PRIor

A

L PREpared by user-id B B |
PASsword is password

A

L WHEre conditional-expression _

(for complete conditional-expression syntax, see WHERE clause in Chapter 3)
I—BY—[SET(';I—‘
AREa

L T0 SYS
ch
T oot

MODule module-name

A
y

HIGhest
LOWest

L— Version is _{E version-number ———J

> | >

| LANguage is language I PREpared by user-id []
PASsword is password

L VERB DISplay L AS —I: SYNtax __i]_J
PUNch COMments
ADD
MOD1i fy
REPTace
DELete

A
A

Parameters

TABIle name is table-name
Identifies a new table to be established in the dictionary, or an existing occurrence
to be modified, replaced, deleted, displayed, or punched. Table-name must be a 1-
through 8-character alphanumeric value. The specified nhame must not duplicate
the name of an existing program, map, subschema, or CA-ADS dialog.

LANguage is
Qualifies the requested table/module with a language. The LANGUAGE
specification uniquely identifies two modules with the same name and version and
is used by the DML precompilers when modules are used in programs.

TABLE
When used with the LANGUAGE IS clause, supplies the appropriate language,
TABLE, automatically.

4-222 CA-IDMS IDD DDDL Reference

4.26 TABLE

SAMe as TABle/M ODule table-name/module-name
Copies all entries associated with the named table or module, except the name and
LANGUAGE specifications. The table/module to be copied must have the
language TABLE.

COPy entity-option FROm entity-type-name entity-occurrence-name
Copies selected options from an entity-occurrence definition and merges the
copied options into this definition. TABLEs can copy only from other modules
with a language of TABLE.

NEW NAMe is new-table-name
Specifies a new name for the requested table. This clause changes only the name
of the table; it does not alter or delete any previously defined relationships in
which the table participates. Subsequent references to the table must specify the
new name. New-table-name must be a 1- through 8-character aphanumeric value.
The concatenation of the new table name, version number, and language must not
duplicate that of an established table or module occurrence.

NEW Version is new-version/NEXt HIGhest/NEXt L OWest
Specifies a new version number for the named table. The combination of the
table name, new version number, and language qualification must not duplicate
that of an existing table or module.

WIThin SY Stem/SUBSY stem system-name
Associates the requested table with (INCLUDE) or disassociates it from
(EXCLUDE) the specified system or subsystem. System-name must reference an
existing system or subsystem.

relational-key is table-name/modul e-name
Associates (INCLUDE) the table with or disassociates it from (EXCLUDE)
another table or module by means of the named relationa key. If the tables
and/or modules being related have the same name and version but different
languages, or if the related module has a version of HIGHEST or LOWEST and is
qualified by language, the LANGUAGE parameter must be specified. For a
complete description of defining and using relational keys, see 3.6.1, “Relational
keys’ on page 3-34.

MAP map-name
Associates (INCLUDE) the table with or disassociates (EXCLUDE) it from a map.
Map-name must reference an existing map.

TYPeis
Specifies the table type. This clause is required for ADD operations.

EDIt
Defines a table that contains a list of values or ranges of values; a data field will
be checked against the table.

VALid/INValid
Specifies whether the list contains valid or invalid values; VALID is the default.

CODe
Defines a table that translates internal codes in a record to external report values
(decoding) or maps external values back to internal record codes (encoding).

Chapter 4. Entity-Type Syntax 4-223

4.26 TABLE

SEArch is
Specifies the method by which the table is to be searched.

L INear
Starts the search at the beginning of the table and proceeds line by line until the
specified value is found. LINEAR is the default.

BlNary
Starts the search in the middle of the table and halves the table each time a
comparison is made until the specified value is found. Edit tables to be searched
by the binary method can include only single values.

ON ENCode/DECode
Specifies whether the binary search is to be performed on encoded or decoded
table values. (The option is for code tables only.) The default is ENCODE.

TABIe/ENCode/DECode DATa is
Specifies the type of table. DECODE allows different types of encode and decode
values.

AL Phanumeric
Specifies that the corresponding table values in the value list are one of the
following types of literals:

m A literal that contains only EBCDIC characters
n A literal that contains only DBCS characters enclosed in the shift codes

® A literal that contains a combination of characters with the DBCS characters
enclosed in shift codes

The character strings must be enclosed in the site-specific quote character.
ALPHANUMERIC is the default.

NUMeric
Specifies numeric data.

GRAphics
Specifies that the corresponding table values in the value list are graphic (G-)
literals. You use G-literals when an element must be interpreted without the shift
codes. The external picture of the data element must be X, unless the table is to
be used with mapping. In this case, the external picture of the data element must
be G.

»»> For more information about using graphics literals, see Appendix H,
“Double-Byte Character Set (DBCS) Strings’ on page H-1.

DECimal position is
Specifies the position of the decimal point (NUMERIC option only). Note that
this is an assumed decimal position; no decimal point appears in the values.

TABleis
Specifies whether the table is to be maintained in the dictionary as a sorted table.

4-224 CA-IDMS IDD DDDL Reference

4.26 TABLE

UNSorted
Sorts table values at runtime in the order in which they are placed in the
dictionary. UNSORTED is the default.

SORted
Sorts table values aphabetically or numerically as they are added to the table.

Note: A binary searched table can be stored with the UNSORTED attribute;
however, the table is automatically sorted when it is generated.

DUPIlicates are ALLowed/NOT ALL owed
Specifies whether duplicate values can be included in sorted tables; ALLOWED is
the default. Note that DUPLICATES ARE NOT ALLOWED must be specified
for binary searched tables.

VALues are
Specifies whether table values are to be listed, inserted, or removed.

LIST
Lists the table values or pairs of values (code tables only) stored in the dictionary.

value THRu value
Inserts single values, ranges of values, combinations of single values and ranges,
or null values in the edit table. Value must be a 1- through 34-character value and
must be enclosed in parentheses.

encode-value decode-value
Specifies pairs of values to be inserted in the code table. Encode-value must be a
1- through 34-character value; decode-value must be a 1- through 62-character
value. The specified values must be enclosed in parentheses.

NOT FOUND is a condition to be acted upon and may be used as an
encode-value or as an decode-value or as both (refer to the CA-IDMS Mapping
Facility document for more information).

NULI
Removes all values from the table.

GENerate
Causes a load module containing al the values in the table to be placed in the
dictionary load area. The generated load module has the same name and version
number as the named table.

WITh/ALSo WITh/WITHOut
Includes or excludes the specified options when the specified table is displayed or
punched. Detailed information for each DISPLAY/PUNCH option is under 2.4.2,
“SET OPTIONS syntax” on page 2-9. The option that is listed below presents
special considerations for this entity type.

DETails
Includes table data.

Usage: TABLE statement considerations

The following considerations apply to TABLE:

Chapter 4. Entity-Type Syntax 4-225

4.26 TABLE

The reserved words TABLE and MODULE are interchangeable within TABLE
statement clauses, unless otherwise noted.

Tables are automatically associated with the LANGUAGE class through the
TABLE attribute.

Tables defined by means of the TABLE statement are referred to as stand-alone
tables. The RECORD ELEMENT and COBOL substatements (described under
4.23, “RECORD (REPORT/TRANSACTION)” on page 4-163, previoudly in this
chapter) are used to define built-in tables. For a description of stand-alone and
built-in tables, refer to the CA-IDMS Mapping Facility manual.

If you specify REPLACE

If you specify REPLACE, the DDDL compiler initializes to defaults and/or excludes
the following options:

DESCRIPTION

Related tables

USER REGISTERED FOR

Related attributes

PUBLIC ACCESS

Table data

WITHIN SYSTEM
COMMENTS/DEFINITIONS/comment-key

The following relationships are not affected:

Modules to which the named table is related
Users accessing the named table
Programs using the named table

LANGUAGE specification

Cross-referencing maps and tables

You can add cross-referencing from a table to any MAP (maps used by the CA-IDMS
mapping facility or documentational IDD maps). Y ou must remove al
cross-referencing before you can delete a table.

Example: The following statements add tables MONTHTBL and DECODMTH.
MONTHTBL is an edit table that contains the valid values 1 through 12 for the
months of the year; DECODMTH is a code table that relates the names of the months
to the 2-digit month codes used in the database:

4-226 CA-IDMS IDD DDDL Reference

4.26 TABLE

add

add

table name is monthtbl

table description is 'valid months'
type is edit

search is Tinear

table data is alphanumeric

table is unsorted

values are (01 thru 12)

table name is decodmth

table description is 'month code convert'

type is code

search is Tinear

encode data is alphanumeric

table is unsorted

duplicates are allowed

values are (01 jan 02 feb 03 mar 04 apr
05 may 06 jun 06 june 07 jul 07 july
08 aug 09 sep 10 oct 11 nov 12 dec
not found other)

Chapter 4. Entity-Type Syntax 4-227

4.27 TASK

4.27 TASK

TASK statements are used to document teleprocessing system tasks. Optional clauses
define the program invoked by the task and the task's priority and maximum-wait
interval.

Note: It is recommended that you maintain TASK definitions using the system
generation compiler, not the DDDL compiler. If a system generation
component is processed by the DDDL compiler, only dictionary security is
checked, not system generation security. For more information on using the
system generation compiler, refer to CA-IDMS System Generation.

If the SET OPTIONS statement specifies SECURITY FOR IDMS-DC IS ON, the user
must be assigned the proper authority to issue TASK statements.

Syntax: TASK statement

4-228 CA-IDMS IDD DDDL Reference

4.27 TASK

\4

ADD TASk name is task-name
MODi fy
REPTace
DELete

L— Version is version-number

L NEXt _ t HIGhestj

LOWest

A
4

A

v

|

L—[: PREpared by user-id
REVised —:]_ L PASsword is password —J

L—[j______:]_ DEScription is description-text _
task

' |
|
L_I: INClude « USEr is user-id |
EXClude 1 L user-specification —J

(for complete user-specification syntax, see USER clause in Chapter 3)

A

v

\
v

- >

L PUBTic access is _I:_________:I_ for ALL «
ALLOwed NONe

UPDate —
MODify —
REPTace —
DELete —
DISplay —

\4

T
| »
v I L
INClude i_:I WIThin SYStem system-name
EXCTude

| Version is T version-number TJ
HIGhest
LOWest

| »
»

\ 4

|

L invokes PROgram program-name

HIGhest
LOWest

L— Version is _{E version-number ———J

Chapter 4. Entity-Type Syntax 4-229

4.27 TASK

A

v

|_ TASk PRIority is —E 100 « —4|—‘
task-priorit

Lask-priority

A

L INActive task INTerval is _I: OFF «] |
inactive-wait-time

v

T
—
INClude <« class-name is attribute-name |
EXClude ——:]

L— TEXt is user-text —J

»— EXTernal WAIt is
external-wait-time —
SYStem ————

i —

L DC option is

\

A\

—— invokes PROgram program-name

L— Version is version-number ——J

ENAbTed ¢«
—[DISabled _

EXTernal
__I: INTernal ———J

NOInput «
_T: INPut ————J

NOMa
L MAP

I

v

v

']
\— edit-instruction —l— QUIT

L— EDIt COMments
_{E DEFinition :E}
mment-ke

Cco -Key

I

COMments is —I: NUL1
DEFinition comment-text
comment-key

DISPLAY/PUNCH TASK statement (for a single task)

4-230 CA-IDMS IDD DDDL Reference

4.27 TASK

\4

»—E DISplay TASk name is task-name
PUNch T

A

v

L Version is version-number —J
—E HIGhest
LOWest

A

\4

L PREpared by user-id B] |
PASsword is password

WITh ALL |

ALSo wITh;{ — ALL COMment TYPes

WITHOut — ATTributes

— COMments

— DEFinitions

— DETails

— HIStory

— NONe

— PROgrams
SYStems B
SUBSYstems

— USErs

—[Hggg DEFINED COMments T

-——

L TO SYS
ch
T wooh

MODule module-name

l— Version is version-number ——l
—E HIGhest
LOWest

> | >

|

| LANguage 1is language I PREpared by user-id [_ll
PASsword is password

L VERB DISplay L AS _I: SYNtax ——:j—J
PUNch COMments
ADD
MODi fy
REPlace
DELete

DISPLAY/PUNCH TASK statement (for multiple tasks)

A

\4
A

Chapter 4. Entity-Type Syntax 4-231

4.27 TASK

TASks

v

>—I: DISp]ay ALL
PUNch FIRst

|
NEXt 4 |— nt1t -count J

LASt
PRIor

A
4

| -

L PREpared by user-id T H
PASsword is password

A
4

L WHEre conditional-expression _

(for complete conditional-expression syntax, see WHERE clause in Chapter 3)

v

LBY—[SET('J—‘
AREa

A
\ 4

|_ TO —[SYSpch

MODuTe module-name

HIGhest
LOWest

L— Version is _{E version-number ———J

> | >

L LANguage is language 11 PREpared by user-id [_JI
PASsword is password

A

L VERB DISplay L AS T SYNtax ——:]—J
PUNch COMments
ADD
MODi fy
REPTace
DELete

Parameters:

TASK name is task-name
Identifies a new task to be established in the dictionary, or an existing task to be
modified, replaced, deleted, displayed, or punched. Task-name must be a 1-
through 8-character alphanumeric value.

within SY Stem system-name
Associates the named task with the system identified by the 1- through
32-character system-name. The WITHIN SYSTEM clause is documentational
only, unless the system generation compiler COPY facility is to be used to copy
task occurrences from an IDD-built system. When the COPY facility is not used,
functional task/system relationships are established and maintained by the system
generation compiler.

invokes PROgram program-name
Identifies the initial program to be invoked by the teleprocessing monitor for the
named task. Program-name must be the 1- through 8-character name of an
existing program. This parameter associates an existing program with the

A

4-232 CA-IDMS IDD DDDL Reference

4.27 TASK

task/system relationship. The INVOKES PROGRAM parameter is
documentational only.

If INVOKES PROGRAM is specified, the named program must have been
previoudly related to the system by means of the WITHIN SYSTEM clause of the
PROGRAM statement.

If the INVOKES PROGRAM option is omitted, INCLUDE establishes a new
task/system relationship and EXCLUDE removes the task/system relationship and
any dependent task/program relationships.

TASk PRIority is 100/task-priority-number
Specifies a dispatching priority for the named task. Task-priority-number must be
an integer in the range 1 through 255; the default for ADD is 100. In a DC/UCF
environment, a high number indicates a high priority. Task priorities are used in
combination with user and logical-terminal priorities to establish the run-time
dispatching priority of the task.

INACtive task INTerval is
Specifies the time the named task can be permitted to wait for a resource before
being terminated.

OFF
Specifies that the task will never terminate due to elapsed time. OFF is the
defaullt.

inactive-wait-time
Specifies that the task will terminate if the specified wait time is exceeded.
Inactive-wait-time is specified in seconds and must be an integer in the range 1
through 32,767.

EXTernal WAIt is
Overrides the system generation statement EXTERNAL WAIT parameter
specification for the named program.

External-wait-time
Specifies the amount of time, in wall-clock seconds, the system is to wait for the
program to issue a database request before abnormally terminating the program.
Exter nal-wait-time must be an integer in the range O through 32,767.

SY Stem
Directs the system to use the external wait time specified in the SYSTEM
statement. A value of 0 is synonymous with SYSTEM.

FORever/NO
Directs the system not to terminate the program based on an external wait time.

DC option is
Documents the information used to define the named task during system
generation.

INVOKES PROGRAM program-name
Identifies the the initial program to be invoked by DC/UCF for the task.
Program-name must reference an existing program. This parameter is required for
DC/UCF tasks.

Chapter 4. Entity-Type Syntax 4-233

4.27 TASK

ENAbled
Automatically enables the task at system startup. ENABLED is the default.

DI Sabled
Disables the task until it is enabled explicitly by an operator command during
system execution.

EXTernal
Specifies that the task can be invoked externally from a terminal. EXTERNAL is
the defaullt.

INTernal
Specifies that the task can be invoked only by means of a DC RETURN from an
executing program.

NOInput
Specifies that the task's terminal input buffer is to contain only the task code.
NOINPUT is the default.

INPut
Specifies that the task's terminal input buffer can contain data in addition to the
task code. INPUT must be specified if the task's initial program reads the input
line.

NOMap
Specifies that a map is not invoked. NOMAP is the default.

MAP
Specifies that tasks defined to write maps to user terminals can perform that
function exclusively. DC/UCF displays a map automatically at the user terminal
and eliminates the need for a program to perform this 1/O function.

WITh/ALSo WITh/WITHOut
Includes or excludes the specified options when the named task is displayed or
punched. Detailed information for each DISPLAY/PUNCH option is under 2.4.2,
“SET OPTIONS syntax” on page 2-9. The option that is listed below presents
specia considerations for this entity type.

DETails
Includes the DESCRIPTION, TASK PRIORITY, INACTIVE TASK INTERVAL,
and DC OPTION specifications.

Usage: If you specify REPLACE

If you specify REPLACE, the DDDL compiler initializes to defaults and/or excludes
the following:

DESCRIPTION

USER REGISTERED FOR

PUBLIC ACCESS

WITHIN SYSTEM
COMMENTS/DEFINITIONS/ comment-key
TASK PRIORITY

INACTIVE TASK INTERVAL

4-234 CA-IDMS IDD DDDL Reference

4.27 TASK

ATTRIBUTES
DC OPTION

Task/system relationships established by the system generation compiler are not
affected.

Example: The following ADD statement defines the task RESER9 within the system
RES and associates the program RES1054 with the task/system relationship.
Additional clauses supply priority and wait-time-before-termination specifications.

add task name is reser9
task description is 'reserve interaction'
within system res
invokes program resl054
task priority is 215
inactive interval is 5.

The following MODIFY statement disassociates the task from the system RES; the DC
OPTION clauses establish the task's initial program and identify the task as part of a
continuing transaction for use by a DC/UCF system.
modify task name is reser9

exclude within system res

dc option is invokes program resl054
dc option is transaction nostart.

Chapter 4. Entity-Type Syntax 4-235

4.28 USER

4.28 USER

USER statements document users in the dictionary by relating users to systems and to
other users, assigning users the authority to access secured products and entity types
and to perform secured operations, and supporting attribute/entity relationships and
documentational entries.

The system generation compiler can be used in conjunction with the DDDL compiler
to complete user definitions. For additional information, refer to CA-IDMS System
Generation.

If the SET OPTIONS statement specifies SECURITY FOR IDD IS ON, the user must
be assigned the proper authority to issue USER statements.

Syntax: USER statement

4-236 CA-IDMS IDD DDDL Reference

4.28 USER

\4

ADD USEr name is user-id
MODi fy
REPTace
DELete

PREpared by user-id
L‘: REVised ——,— L PASsword is password J

A

| >

A

L MAPtype —E 15_—,—[rll\}ﬁgu-tyge-name :l—-‘

A

L FULT name is full-user-name]

INClude « OF SYStem —_|— system-name
EXClude —_I— _[SUBSYstem

> I ,

HIGhest

|
L Version is —E version-number —J L TEXt is user-text _
LOWest

— | .
L SAMe AS USEr user-id _

| |
L COPy —— ALL COMment TYPes —— FROm user user-id _
— COMments
— DEFinition
— ATTributes
— USERS

SYStems —_'—
—[SUBSYstems
— WIThin USEr

— comment-key
— relational-key

\4

\4

A
\4

L NEW NAMe is new-user-id]

v

A

L user DEScription is description-text _

Chapter 4. Entity-Type Syntax 4-237

4.28 USER

<|_]
PASsword is NUL1
LL..

password

v

»—

<« —

L[INClude
EXClude

€ AUThorit
‘T T

UPDate ¢«
ADD
MODi fy
REPTace
DELete
DISplay
. | .
is , ALL
I (] — PASsword I)]
— CULprit
— 0LQ
— ADS

- PANel ————

LOAd MODUTe
CLAss and ATTribute —
CLAss ———
ATTribute
DC

DEStination

LINe
LOGical-terminal
MAP

MESsage

PHYsical-terminal —
QUEue ————MMMMMM
TASk

1DD

ELEment
ENTRy point
FILe
MODUTe
PROCess
QFIle
TABTe
PROgram
RECord
REPOrt
TRAnsaction
SYStem —_Ji
SUBSYstem
USEr
1DMs
SCHema

SUBSChema

4-238 CA-IDMS IDD DDDL Reference

4.28 USER

A
A\

L[INClude :’_ SIGnon PROfile is module-name

EXCTude
B] LANguage is language]
Version is version-number —
_{E HIGhest
LOWest
L IDD SIGnon is —[AlLLowed ¢ —J—‘
NOT ALLowed

|

>

l—[INCTude « ACCess to SYStem T system-specification i
EXClude 1 L SUBSYstem

(expanded system-specification syntax follows this syntax diagram)

v

INClude :,— ACCess to ASF _
EXCTude

A

INClude :,— ACCess to IDB _

EXCTude

A

L DEFAult for PUBTic access is ALL « —
NONe
UPDate —
MODify —
REPTace —
DELete —
DISplay —

»—

T
|
l—[INCTude ¢« ACCess to FILe file-name
EXClude j—

A\

\ 4
\4

HIGhest

|
|— Version is <E version-number ——J |— TEXt is user-text —J
LOWest

|

»—

|

>

l—[INClude <—_—|— ACCess to SUBSChema subschema-specification _
EXClude

v

(expanded subschema-specification syntax follows this syntax diagram)

Chapter 4. Entity-Type Syntax 4-239

4.28 USER

A

L 0LQ ACCess is _I: IDMs sgl_:]—J
oLQ «

v

A

L_I: INClude <« ACCess to QFIle gfile-name
EXClude ——:I_

\ 4

A\

L— Version is _{E version-number ———J

HIGhest
LOWest

v

A

L 0LQ MENu-mode is —E ALLowed ¢«

NOT ALLowed —
ONLy

A

L olg QFIle is —{E ALLowed «

il

NOT ALLowed —
ONLy

v

A

L 0LQ QFIle SAVe is _I: ALLowed <« ——:]—J
NOT AlLLowed

v

A

L

olg MRR is AlLLowed « ——:]—J
L NOT ALLowed

v

A

L

ola

OPTional e_:I— interrupt _]

MANdatory

v

A

L

olg SORt is AlLLowed <« —i:r—
‘ _I: NOT ALLowed

v

A

L culprit OVErrides are AlLLowed ¢
L
NOT ALLowed

v

4-240 CA-IDMS IDD DDDL Reference

4.28 USER

<
<

T
[olq DEFault OPtions are - (—{—

ECHo

-
-
-
-
-
-
-
-
-
-
-
-

NONe

FUL1

PATH

—— HEAder <«

NO ECHo

<
ALL]
NO FIL1
FILler
INTerrupt ¢« _:I________
NO INTerrupt

WHOTe <«
PARtial

SPArse
NO 0LQ HEAdm—
0LQ HEAder

COMments ¢«
NO COMments

NO CODe TAB1e—<-—|—

CODe TABle

NO PATH STAtEi_i_:T____
STAtus

NO EXTernal PICture ¢ —

EXTernal PICture

VERbos
TERse

N

<

S R

T

<

]

e ¢ :T__________

I

\4

»—

INClude
EXClude

I

i_:I— WIThin USEr user-id

L— TEXt is user-text —J

L,

»

»—
>

[
|
v

_[

INClude
EXClude

>

i_:I_ class-name is attribute-name

L TEXt is user-text il

)

[
|
v

I_[

INClude
EXClude

i_:]_ relational-key is user-id

L TEXt is user-text —J

[
|
v

|

v

v

»—

L.

DIt C

D

IS

' |
V\— edit-instruction 1 QUIT

OMments
EFinition :;]

comment-key

>

“E

COMments
DEFiniti
comment-key

is —[NULT

on
ke

Expansion of system-specification

comment-text

\ 4
A

Chapter 4. Entity-Type Syntax

4-241

4.28 USER

»>— system-name

HIGhest
LOWest

|— Version is —E version-number —J

v

A

L INStallation code is character-literal _

A

v

L PRIority is —E 0 <« ﬁ—‘
riorit

user-p y

A

\4
A

|
L SECurity classes is —E ADD ¢« __|_L(—I— security-code 1) 1

DELete ALL
Expansion of subschema-specification
»»— subschema-name of SCHema schema-name >
|— Version is version-number —J
—E HIGhest
LOWest
non QFile is gfile-name
|—SIG. QFile is gfil n |

HIGhest

|— Version is —E version-number —
LOWest

DISPLAY/PUNCH USER statement (for a single user)

4-242 CA-IDMS IDD DDDL Reference

4.28 USER

\4

»—E DISplay USEr name is user-id
PUNch T

v

L PREpared by user-id B N |
PASsword is password

I

WITh v ALL |
ALSo WITH — ALL COMment TYPes —————
WITHOut — ATTributes

— COMments
— DEFinitions
— DEStinations
— DETails
— ELements
— ENTRy points
— FlILes
— HIStory
— LINes
— LOGical-terminals
— MAPS

MODules
L ONLy _

— NONe

PANels
—[SCReens
— PHYsical-terminals
— PROCesses
— PROgrams
— QFIles
— QUEues
— RECords
— REPorts
— SAMe AS
— SCHemas
— SUBSChemas

SYStems
—[SUBSYstems i
— TABles
— TASks
— TRAnsactions
— USErs
—[B[S)E;' DEFINED COMments _I—

USEr DEFINED NESts T
T UDNs

— WHEre USED
— WITHIn USEr

SYSpch
—E MODuTe module-name B
Version is version-number
—E HIGhest

LOWest —

A\

L 1o

Chapter 4. Entity-Type Syntax 4-243

4.28 USER

> | >

| LANguage is language I PREpared by user-id []
PASsword is password

|— VERB DISplay |— AS —E SYNtax j—‘
PUNch COMments
ADD
MOD1i fy
REPlace
DELete

DISPLAY/PUNCH USER statement (for multiple users)

»—[DISplay ALL USErs >
PUNch l FIRst r 1«] |
NEXt entity-count
LASt j
PRIor

A

| >

L PREpared by user-id C H
PASsword is password

A

L WHEre conditional-expression _

(for complete conditional-expression syntax, see WHERE clause in Chapter 3)

Ty ser e]
L

AREa

A

|— TO —[SYSpCh

MODule module-name

HIGhest
LOWest

’— Version is —E version-number —J

> | >

| LANguage is language I PREpared by user-id [H
PASsword is password

|— VERB DISplay |— AS —E SYNtax j—‘
PUNch COMments
ADD
MODi fy
REPTace
DELete

A

Parameters:

USEr name is user-id
Identifies a new user to be established in the dictionary, or an existing user to be
modified, replaced, deleted, displayed, or punched. User-id must specify a 1-
through 32-character alphanumeric value and must be unique in the dictionary.

4-244 CA-IDMS IDD DDDL Reference

4.28 USER

MAPtype is= map-type-name/NUL |
Associates (map-type-name) or disassociates (NULL) an alternative map table (that
aready exists in the dictionary) with the user. During user signon, the DC/UCF
system accesses the designated alternative map table. For more information, see
the CA-IDMS Mapping Facility.

FULI name is full-user-name
Specifies a 1- through 32-character name that clarifies or supplements user-name
or supplies the full name for an abbreviated user name.

OF SY Stem/SUBSY stem system-name
Establishes (INCLUDE) or removes (EXCLUDE) a documentational relationship
between the named user and the requested system or subsystem.

SAMe AS USEr user-id
Copies the following options from the definition of the named user: user nests,
attributes, systems associated with the user by means of the OF
SYSTEM/SUBSY STEM clause, and comments.

NEW NAMe is new-user-id
Specifies a new name for the requested user. This clause changes only the name
specification; it does not ater or delete any previously defined relationships in
which the named user participates. Subsequent references to the user must specify
the new name. New-user-id must be a 1- through 32-character value that does not
duplicate the name of an existing user.

PASsword is NULI/password
Establishes, replaces, or deletes a password for the named user. password must be
a 1- through 8-character alphanumeric value. Specify PASSWORD IS NULL or
PASSWORD IS " to delete a password. This password must appear whenever the
user name appears in an IDD SIGNON statement or in a PREPARED BY or
REVISED BY clause.

If the SET OPTIONS statement specifies INDIVIDUAL PASSWORD SECURITY
OVERRIDE IS ON and the USER statement is modifying the issuing user's
password, neither AUTHORITY FOR UPDATE IS PASSWORD nor
AUTHORITY FOR MODIFY IS USER need be specified; the AUTHORITY
clause is described below. However, if the SET OPTIONS statement specifies
INDIVIDUAL PASSWORD SECURITY OVERRIDE IS OFF, the issuing user
must be assigned PASSWORD authority as well as the appropriate USER
entity-type authority.

AUThority for UPDate/ADD/M ODify/REPlace/DEL ete/DI Splay
Assigns to (INCLUDE) or removes from (EXCLUDES) the named user the
authority to access a secured product or entity type or to perform a secured
operation. (Security must have been previousdly enabled by means of a SET
OPTIONS statement SECURITY clause.)

This clause aso specifies the verbs that the named user can issue for entities
within secured products:

m UPDATE specifies that the user can issue all verbs (ADD, MODIFY,
REPLACE, DELETE, and DISPLAY/PUNCH). UPDATE is the default.

Chapter 4. Entity-Type Syntax 4-245

4.28 USER

. ADD specifies that the user can issue only ADD and DISPLAY/PUNCH
verbs.

» MODIFY specifies that the user can issue only MODIFY and
DISPLAY/PUNCH verbs.

» REPLACE specifies that the user can issue only REPLACE and
DISPLAY/PUNCH verbs.

» DELETE specifies that the user can issue only DELETE and
DISPLAY/PUNCH verbs.

®n DISPLAY gpecifies that the user can issue only DISPLAY/PUNCH verbs.

To specify the INCLUDE/EXCLUDE parameter, the PREPARED/REVISED BY
clause must identify a user with the AUTHORITY FOR UPDATE IS
PASSWORD option. For more information about IDD security, see 3.3,
“Securing the dictionary” on page 3-7.

ALL
Assigns the user the authority to access all products and entity types and in order
to perform all secured operations. AUTHORITY FOR UPDATE IS ALL is
required to establish default processing options for a specified dictionary by
issuing the SET OPTIONS FOR DICTIONARY statement. This authority is also
required to use the FIRST/SECOND/THIRD/FOURTH ALTERNATE PICTURE
KEYWORD clause of the SET OPTIONS statement. Finally, AUTHORITY FOR
UPDATE IS ALL is required to turn off entity-occurrence security with the
REGISTRATION OVERRIDE clause.

The IDD installation procedure establishes one user with the AUTHORITY FOR
UPDATE IS ALL attribute. This user is named 'CULL DBA' and assigned the
password DBAPASS. After the installation, rename 'CULL DBA' and modify the
password. Create a backup by adding another user with AUTHORITY IS ALL; if
the new name of the DBA is inadvertently forgotten or lost, the backup user can
be used.

PASsword
Allows the user to assign or change passwords for other users and to issue the
AUTHORITY FOR PASSWORD clause for other users. A user with password
authority can update the AUTHORITY clause of any user 1D, including his own,
to any level. Note that if PASSWORD is selected, the keyword UPDATE must
be specified in the FOR clause (described above).

CULprit
Allows the user to access files and subschemas to run CULPRIT reports, change
record layouts and file definitions (if the named user is assigned the CULPRIT
OVERRIDES ARE ALLOWED option), and to generate DDR reports (if the
named user is assigned the CULPRIT OVERRIDES ARE ALLOWED option and
is authorized to access subschema IDMSNWKA of schema IDMSNTWK, version
1). This parameter allows the user to perform CULPRIT-related activities when
the default processing options for the session include SECURITY FOR CULPRIT
IS ON. Note that if CULPRIT is selected, the keyword UPDATE must be
specified in the FOR clause (described above).

4-246 CA-IDMS IDD DDDL Reference

4.28 USER

oLQ
Allows the user to code USER statement clauses that control access to OLQ files
and subschema views and assign OLQ command authorities and
processing/reporting options when the default processing options for the session
include SECURITY FOR OLQ IS ON. If OLQ is specified, the keyword
UPDATE must be specified in the FOR clause (described above).

ADS
Allows the user to generate CA-ADS dialogs when the default processing options
for the session include SECURITY FOR ADS IS ON. If the keyword UPDATE
is specified in the FOR clause (described above), either MODIFY or REPLACE
alows the user to modify CA-ADS dialogs.

LOAd MODUle
Allows the user to access load modules when the default processing options for
the session include SECURITY FOR LOAD MODULE IS ON.

CLAss and ATTribute
Allows the user to access classes, attributes, and user-defined entities when the
default processing options for the session include SECURITY FOR CLASS AND
ATTRIBUTE IS ON. Note that the keywords CLASS and ATTRIBUTE can be
issued separately to assign individual authority for classes or attributes
(user-defined entities).

DC
Allows the user to access teleprocessing entities (DESTINATION, LINE,
LOGICAL-TERMINAL, MAP, MESSAGE, PANEL, PHYSICAL-TERMINAL,
QUEUE, and TASK) when the default processing options for the session include
SECURITY FOR IDMS-DC IS ON. Note that the keywords DESTINATION,
LINE, LOGICAL-TERMINAL, MAP, MESSAGE, PANEL,
PHYSICAL-TERMINAL, QUEUE, and TASK can be issued to assign authority
for the specified entity type only.

IDD
Allows the user to access IDD entities (ELEMENT, ENTRY POINT, FILE,
MODULE, PROCESS, PROGRAM, QFILE, RECORD, REPORT,
TRANSACTION, SYSTEM, TABLE, and USER) when the default processing
options for the session include SECURITY FOR IDD SIGNON and/or IDD 1S
ON. Note that the keywords ELEMENT, ENTRY POINT, FILE, MODULE,
PROCESS, PROGRAM, QFILE, RECORD, REPORT, TRANSACTION,
SYSTEM, TABLE, and USER can be issued to assign authority only for the
specified entity type.

IDMs
Allows the user to access CA-IDMS/DB entities (SCHEMA, SUBSCHEMA, and
DMCL) when the default processing options for the session include SECURITY
FOR IDMS IS ON. Note that the keywords SCHEMA, SUBSCHEMA, and
DMCL can be issued to assign authority only for the specified entity type.

SIGnon PROfile is module-name
Associates (INCLUDE) or disassociates (EXCLUDE) a module that has been
defined for use as a signon profile. Module-name must reference an existing
module. The LANGUAGE parameter is required; language specifies the language

Chapter 4. Entity-Type Syntax 4-247

4.28 USER

of the signon profile; for example, OLQ or DC. All languages, including
user-defined languages, can be specified.

When the named user signs onto an application, the commands within the signon
profile module are executed automatically. These profiles are not executed when
signing onto a DC SYSTEM.

IDD SIGnon is
Specifies whether the named user is authorized to sign on to and execute the
online or batch DDDL compiler when the SET OPTIONS statement specifies
SECURITY FOR IDD IS ON.

Note that the issuing user must be assigned IDD SIGNON authority.

ALLowed
Authorizes the user to sign on to the DDDL compiler. ALLOWED is the default.

NOT ALLowed
Prohibits the user from signing on to the DDDL compiler.

ACCess to SY Stem/SUBSY stem system-name
Establishes (INCLUDE) or removes (EXCLUDE) a system access privilege. If
this clause is specified in a non CA-IDMS/DB environment, the user/system
relationship is documentational.

Note: You must have IDMS-DC authority to use this clause.

INStallation code is character-literal
Specifies an installation code for the named user. This code can be accessed at
runtime by user exits or programs to provide additional security. Character-literal
must be a 1- through 32-character aphanumeric symbol specified as an absolute
expression.

PRIority is O/user-priority
Specifies the dispatching priority for the named user. DC/UCF uses the
dispatching priority in combination with task and logical terminal priorities to
establish a run-time dispatching priority for tasks initiated by the named user.
User-priority must be an integer in the range 0 through 255; the default for ADD
operations is 0. A high number indicates a high dispatching priority.

SECurity classesis
Adds or deletes security class codes for the named user; the user can execute only
programs and tasks with matching security classes.

ADD/DEL ete
Specifies that the named security classes are added to or deleted from the user
definition; ADD is the default for ADD operations.

security-code/AL L
Specifies that the named security classes or all security classes are the object of
the ADD or DELETE request. Security-code must be an integer in the range 1
through 255; multiple values must be enclosed in parentheses and separated by
blanks.

4-248 CA-IDMS IDD DDDL Reference

4.28 USER

ACCess to ASF
Specifies that the named user has (INCLUDE) or does not have (EXCLUDE)
access to the CA-IDMS/DB Automatic System Facility (ASF).

ACCess to IDB
Specifies that the named CA-IDMS/DB or Information Center Management
System (ICMS) user has (INCLUDE) or does not have (EXCLUDE) access to the
Information Database (IDB).

DEFAuIlt for PUBIic access is
Assigns a default public access specification to the named user. This feature, for
ASF users only, is used to identify the public access level to be established by the
user when storing entity-occurrence definitions in the dictionary through ASF. If
an option other than ALL is specified, ASF automatically generates the
appropriate registration option within the entity definition.

ACCess to FlLe file-name
Specifies that the named CA-CULPRIT user has access to the named file. Note
that if CA-CULPRIT security is enabled, the requested user must be assigned
CULPRIT authority in order to access the named file.

ACCess to SUBSChema subschema-name of SCHema schema-name
Specifies that the named CA-OLQ or CA-CULPRIT user has access to
(INCLUDE) or does not have access to (EXCLUDE) the named subschema.
Subschema-name must identify a subschema view associated with schema-name.
If OLQ or CULPRIT product security has been enabled in the SET OPTIONS
statement SECURITY clause, the issuing user must be assigned OLQ or
CULPRIT authority.

SIGnon QFlle is dfile-name
Associates an existing gfile with the named subschema and establishes access
privilege to that dfile for the named CA-OLQ user. The named dfile is invoked
automatically when the user signs on to OLQ and names the associated
subschema.

Note: The dfile access privilege does not permit the named user to execute
gfiles; the dfile execution privilege is established separately by means of
the OLQ QFILE clause described below.

OLQ ACCessis
Indicates an OLQ user's type of dfile access.

IDMs sl
Specifies dfile access using the functionality available with the CA-IDMS/SQL
Option, providing the SQL option is installed. IDMs sql, IDMssgl, and
IDMS-SQL are synonyms and can be used interchangeably.

»»> For information on SQL, see the CA-IDMS SQL Reference.

OoLQ
Specifies dfile access using the functionality available with CA-OLQ. OLQ isthe
default for OLQ ACCESS.

Chapter 4. Entity-Type Syntax 4-249

4.28 USER

ACCess to QFlle dfile-name
Specifies that the named CA-OLQ user has access to (INCLUDE) or does not
have access to (EXCLUDE) the named dfile. Note that the gfile access privilege
does not permit the named user to execute dfiles; dfile execution privilege is
established separately by means of the OLQ QFILE clause described below.

OLQ MENu-mode is
Specifies whether the named user is authorized to access CA-OLQ in menu mode.
If the SET OPTIONS statement specifies SECURITY FOR OLQ IS ON, the
issuing user must be assigned OLQ authority.

AL L owed
Authorizes the CA-OLQ user to access CA-OLQ in menu mode. ALLOWED is
the default.

NOT ALLowed
Prohibits the CA-OLQ user from accessing CA-OLQ in menu mode.

ONLy
Specifies that the CA-OLQ user is alowed to access CA-OLQ in menu mode
only.

OLQ QFlleis

Specifies whether the named user is authorized to execute CA-OLQ dfiles. If the
SET OPTIONS statement specifies SECURITY FOR OLQ IS ON, the issuing user
must be assigned OLQ authority.

ALLowed
Authorizes the OLQ user to execute gfiles. ALLOWED is the default.

NOT ALLowed
Prohibits the OLQ user from executing gfiles.

ONLYy
Specifies that the OLQ user is authorized to access OLQ only through dfiles.

OLQ QFlle SAVeis
Specifies whether the named CA-OLQ user is authorized to save paths and
CA-OLQ command groups as dfiles. If the SET OPTIONS statement specifies
SECURITY FOR OLQ IS ON, the issuing user must be assigned OLQ authority.

ALLowed
Authorizes the CA-OLQ user to save paths and groups of commands as dfiles.
ALLOWED is the default.

NOT ALLowed
Prohibits the CA-OLQ user from saving paths and groups of commands as dfiles.

olg MRR is
Specifies whether the named CA-OLQ user is authorized to retrieve multiple
record occurrences with a single CA-OLQ command. If the SET OPTIONS
statement specifies SECURITY FOR OLQ IS ON, the issuing user must be
assigned OLQ authority.

4-250 CA-IDMS IDD DDDL Reference

4.28 USER

ALLowed
Authorizes the CA-OLQ user to retrieve multiple record occurrences with a single
OLQ command. ALLOWED is the default.

NOT ALL owed
Prohibits the CA-OLQ user from retrieving multiple record occurrences with a
single CA-OLQ command.

olg OPTional/M ANdatory interrupt
Specifies whether the named CA-OLQ user is authorized to select the OLQ
NOINTERRUPT option (described below). If the SET OPTIONS statement
specifies SECURITY FOR OLQ IS ON, the issuing user must be assigned OLQ
authority.

OPTional
Authorizes the CA-OLQ user to select the OLQ NOINTERRUPT option.

MANdatory
Requires that the OLQ INTERRUPT be enabled at all times for the user.

olqg SORt is
Specifies whether the named CA-OLQ user can issue the CA-OLQ SORT
command. If the SET OPTIONS statement specifies SECURITY FOR OLQ IS
ON, the issuing user must be assigned OLQ authority.

ALLowed
Authorizes the CA-OLQ user to issue the CA-OLQ SORT command. ALLOWED
is the default.

NOT ALL owed
Prohibits the CA-OLQ user from issuing the CA-OLQ SORT command.

culprit OVErrides are
Specifies whether the named CA-CULPRIT user is authorized to define file
attributes and records. If the SET OPTIONS statement specifies SECURITY FOR
CULPRIT IS ON, the issuing user must be assigned CULPRIT authority.

ALLowed
Authorizes the CA-CULPRIT user to code file attributes and REC parameters.
ALLOWED is the defaullt.

NOT ALLowed
Prohibits the CA-CULPRIT user from coding file attributes and REC parameters.

olq DEFAult OPTions are
Specifies the CA-OLQ processing control and display options that will be in effect
when the named user signs on to CA-OLQ. If the SET OPTIONS statement
specifies SECURITY FOR OLQ IS ON, the issuing user must be assigned OLQ
authority.

HEAder/NO HEAder
Specifies whether CA-OLQ report files will contain a header line. This option has
no effect on single-record-occurrence retrieval displays. The default for ADD is
HEADER.

Chapter 4. Entity-Type Syntax 4-251

4.28 USER

ECHO/NO ECHo
Specifies whether a user-entered command will be repeated by CA-OLQ on the
output device. The default for ADD is ECHO.

ALL/NONe
Specifies whether the default internal field list for all records retrieved during the
named user's CA-OLQ session will contain all or none of the fields. The default
for ADD is ALL.

NO FILler/FILler
Specifies whether filler field values will be displayed. The default for ADD is
NO FILLER.

INTerrupt/NO INTerrupt
Specifies whether the processing interrupt feature for multiple record retrievals
will be enabled or disabled. The default for ADD is INTERRUPT.

Note: The OLQ MANDATORY INTERRUPT specification takes precedence
over NO INTERRUPT.

WHOIe/PARtial
Specifies the content of displayed path retrieval report lines. WHOLE displays
only those lines containing a retrieved occurrence for every record type in a path
definition. PARTIAL displays al lines, whether or not they contain data for every
path record type. The default for ADD is WHOLE.

FULI/SPArse
Specifies the format of displayed path retrieval report lines. FULL displays data
associated with a record type once for each retrieved occurrence. SPARSE
displays data associated with a record type only once, regardless of how many
associated record occurrences are retrieved. The default value for ADD is FULL.

NO OLQ HEAder/OLQ HEAder
Specifies whether the CA-OLQ report file contains a header line. This option has
no effect on single-record-occurrence retrieval displays. The default for ADD is
NO OLQ HEADER.

COMmentNO COMments
Specifies whether comments will accompany the output from HELP RECORDS,
HELP SUBSCHEMAS, and HELP QFILE requests. The default for ADD is
COMMENTS.

NO CODe TABIe/CODe TABIe
Specifies whether CA-OLQ will access a code table to encode and decode data.
The default for ADD is NO CODE TABLE.

NO PATH STAtugPATH STAtus
Specifies the conditions under which CA-OLQ will retrieve a logical record. NO
PATH STATUS requests CA-OLQ to retrieve a logical record only when the path
status of LR-FOUND is returned. PATH STATUS requests CA-OLQ to retrieve a
logical record when any DBA-defined path status is returned. The default for
ADD is NO PATH STATUS.

4-252 CA-IDMS IDD DDDL Reference

4.28 USER

NO EXTernal PICture/EXTernal PICture
Specifies whether CA-OLQ will use external pictures for displaying data. The
default for ADD is NO EXTERNAL PICTURE.

VERbose/TERse
Controls the amount of information displayed following record and field-level
breaks. The default for ADD is VERBOSE.

WIThin USEr user-id
Associates (INCLUDE) the user with or disassociates (EXCLUDE) the user from
the user identified by user-id.

WITh/ALSo WITh/WITHOut
Includes or excludes the specified options when the named user is displayed or
punched. Detailed information for each DISPLAY/PUNCH option is under 2.4.2,
“SET OPTIONS syntax” on page 2-9. The options that are listed below present
special considerations for this entity type.

DETails
Includes the following specifications:

DESCRIPTION
PASSWORD IS ASSIGNED
FULL NAME
AUTHORITY

OLQ MENU-MODE

OLQ QFILE

OLQ MRR

OLQ INTERRUPT

OLQ SORT

OLQ DEFAULT OPTIONS
CULPRIT OVERRIDES
IDD SIGNON

USErs
Includes al the users related by the WITHIN USER clause or relational-key
clause.

Usage: If you specify REPLACE

If you specify REPLACE, the DDDL compiler initializes to defaults and/or excludes
the following:

FULL NAME

DESCRIPTION

OLQ DEFAULT OPTIONS

OLQ options

CULPRIT OVERRIDES

USER REGISTERED FOR

PUBLIC ACCESS
COMMENTS/DEFINITIONS/comment-key
AUTHORITY

ACCESS TO SUBSCHEMA

Chapter 4. Entity-Type Syntax 4-253

4.28 USER

ACCESS TO SYSTEM/SUBSY STEM
ACCESS TO QFILE

WITHIN USER

ATTRIBUTES

The following relationships that include the named user or that the user is related to or
registered for are not affected:

Attributes
Destinations
Elements

Files

Lines

Logica terminals
Modules

Panels

Physical terminals
Processes

Programs

dfiles

Queues

Records

Systems (subsystems)
Tables

Tasks

Users to which the named user is related

Additionally, the following definitions are not affected:

m User definitions built by other CA-IDMS components

mn Users that are related to other users
If you specify DELETE

If you specify DELETE, the DDDL compiler disassociates the named user from all
entity occurrences, unless the user is the last user assigned the REGISTERED FOR
ALL option; see 3.3.4, “PUBLIC ACCESS clause” on page 3-13 for further details.

Default public access (ASF)
The default public access for entity occurrences stored by the named user through ASF

is assigned as follows:

. ALL specifies that unregistered users are allowed to issue all verbs and perform
all secured operations. ALL is the default.

» NONE specifies that unregistered users are not allowed to access the entity
occurrence.

» UPDATE specifies that unregistered users are allowed to issue all verbs.

4-254 CA-IDMS IDD DDDL Reference

4.28 USER

MODIFY specifies that unregistered users are alowed to issue only MODIFY and
DISPLAY/PUNCH verbs.

REPLACE specifies that unregistered users are alowed to issue only REPLACE
and DISPLAY/PUNCH verbs.

DELETE specifies that unregistered users are alowed to issue only DELETE and
DISPLAY/PUNCH verbs.

DISPLAY specifies that unregistered users are allowed to issue only
DISPLAY/PUNCH verbs.

USER AUTHORITY considerations

Consider the following points regarding user authority:

Authority for IDD (or for a specific entity) is required to access a basic entity.
Authority for IDMS (or for a specific entity) is required to access a database
entity.

Authority for IDD or MODULE is required before INCLUDE clauses can be
processed.

Authority for DC only applies to IDD usage. |f a DC component was built or is
owned by the system generation compiler and the DDDL compiler processes the
component, only dictionary security is checked, not the central security used by
system generation.

Authority for MODULE includes authority for QFILE, TABLE, and PROCESS.
ELEMENT authority is not required to:
— Associate an existing element with a record

— Deélete an existing element by using DELETE RECORD if the element doesn't
exist in another record

— Add elements using COBOL syntax (unless IDDMCOBOL or IDDMCOB are
secured).

— RECORD authority is not required to associate an existing record with a
schema if you use the SHARE STRUCTURE parameter of the schema
RECORD statement.

— LOAD MODULE authority is not required to generate tables, subschemas, or
DC/UCF systems. It is required to use LOAD MODULE with the subschema
and DDDL compilers.

— CLASS and ATTRIBUTE authority are not required to associate an attribute
with an automatic class (a class defined as AUTOMATIC PLURAL).

— ATTRIBUTE authority is not required to associate an existing user-defined
comment or nest with an entity.

Chapter 4. Entity-Type Syntax 4-255

4.28 USER

Example: In the following example, the ADD statement defines user DGS as a user
of the systems INVENTORY and STOCK-UPDATE, supplying a full name, a
password, and a description. The ACCESS TO SUBSCHEMA clauses assign access

to two versions of a subschema and two signon dfiles.

The ACCESS TO SYSTEM clauses alow the user to access the systems

INVENTORY and STOCK UPDATE through DC/UCF.

Additional clauses authorize DGS to change the OLQ INTERRUPT option and grant
DGS IDMS authority. The OLQ DEFAULT OPTIONS clause specifies display of
FILLER fields and PARTIAL lines. The class/attribute clause associates the
LIBRARY class with the attribute PRIVATE. The relational-key clause associates

user MRS with user DGS.

add user name is dgs
prepared by dba password is 'ice 9'
password is sgd
full name is 'dianna g. smith'
user description is programmer
within user development
of system inventory
of system stock-update

access to subschema invbasea of schema invbase version 2

signon qfile is invon version 2
access to subschema invbasea of schema invbase
signon gfile is invon
access to system inventory
access to system stock-update
optional interrupt
olg default options filler partial
authority for display is idms
authority for update is password
library is private
'other developer' is mrs.

The MODIFY statement changes the password for the user DGS:

modify user dgs
prepared by dgs password is sgd
password is gsd.

4-256 CA-IDMS IDD DDDL Reference

4.29 USER-DEFINED ENTITY

4.29 USER-DEFINED ENTITY

User-defined statements are used to directly establish user-defined entities in the
dictionary. Optional clauses relate user-defined entities to other user-defined entities
and to classes and attributes.

User-defined entities are established as classes by using the CLASS TYPE IS ENTITY
clause of the CLASS statement. Statements for establishing and maintaining
occurrences of user-defined entity types are similar to the ADD and MODIFY
ATTRIBUTE statements. Once established, user-defined entities can be referenced by
using any syntax that applies to classes and attributes.

If the SET OPTIONS statement specifies SECURITY FOR CLASS AND
ATTRIBUTE IS ON, the user must be assigned the proper authority to issue
user-defined entity statements.

Syntax: USER-DEFINED ENTITY statement

Chapter 4. Entity-Type Syntax 4-257

4.29 USER-DEFINED ENTITY

> ADD user-defined-entity-type name is entity-occurrence-name —»
MODi fy
REPTace
DELete

| -

A
4

|—[PREpared by user-id
REVised ——I— L PASsword is password i

A

|— NEW name is new-entity-name —J

A
v

L deletion LOCk is OFF «
L on

| |
| >
INClude « USEr is user-id |
EXCTude ——I—

L user-specification |

(for complete user-specification syntax, see USER clause in Chapter 3)

v

il

L PUBTic access is —L—_I— for ALL «
ALLOwed NONe

UPDate —
MODify —
REPTace —
DELete —
DISplay —

| I
| >
INClude G_T class-name is attribute-name |
EXClude -

|- TEXt is user-text J

>

T
> »>
INClude <« relational-key is attribute-name —
EXCTude ——I—

L ATTribute |

>

\ 4

L WITHIn class class-name JL TEXt is user-text i

»—

\ 4

I

—

INCTude ¢« relational-key is class-name is attribute-name
L[EXClude ——I—

4-258 CA-IDMS IDD DDDL Reference

4.29 USER-DEFINED ENTITY

| | g
L— TEXt is user-text —J

\

»—

I

|

L—I: INCTude « entity-type-name is entity-occurrence-name —
EXClude ——:I_

\ 4
v

HIGhest
LOWest

L— Version is _{E version-number ———J L— TEXt is user-text ——J

I

»—
>

v

DEFinitio
comment-key

!
. |
L— EDIt —{E COMments ——:E]———l— edit-instruction L QUIT
n

I
>
COMments is —I: NUL1
DEFinition comment-text

comment-key

DISPLAY/PUNCH user-defined entity (for a single entity)

Chapter 4. Entity-Type Syntax 4-259

4.29 USER-DEFINED ENTITY

»—[DISp]ay_—I— user-defined-entity-type name is entity-occurrence-name —
PUNch

v

L PREpared by user-id B H |
PASsword is password

v

T

WITh b ALL |
ALSo WITh — ALL COMment TYPes
WITHOut — ATTributes
— COMments
— DEFinitions
— DEStinations
— DETails
— ELements
— ENTRy points
— FILes
— HIStory
— LINes
— LOGical-terminals
— MAPS

MODuTes
L ONLy _

— NONE
PANels
—E SCReens il
— PHYsical-terminals
— PROCesses
— PROgrams
— QFIles
— QUEues
— RECords
— REPorts
SYStems
—E SUBSYstems J
— TABles
— TASks
— TRAnsactions
— USErs

USEr DEFINED COMments
—E UDCs 1]

USEr DEFINED NESts T
T UDNs

— WHEre USED

\ 4

|_ TO —|: SYSpch

MODuTe module-name

HIGhest
LOWest

|— Version is ‘E version-number ——J

4-260 CA-IDMS IDD DDDL Reference

4.29 USER-DEFINED ENTITY

\ 4
\4

| LANguage is language 11 PREpared by user-id [N
PASsword is password

L VERB DISplay L AS —I: SYNtax ——:]—J
PUNch COMments
ADD
MODi fy
REPTace
DELete

A

DISPLAY/PUNCH user-defined entity (for multiple entities)

>>—I: DISplay ALL user-defined-entity-type ——»
PUNch FIRst 1« ﬁj
NEXt entity-count

LASt
PRIor

A
v

L PREpared by user-id B N |
PASsword is password

A
v

L WHEre conditional-expression |

(for complete conditional-expression syntax, see WHERE clause in Chapter 3)

L BY

\4

SET «
_I: AREa
L TO T SYSpch
MODuTe module-name B N
Version is version-number —
_{E HIGhest
LOWest

\ 4
v

[

|
L PASsword is password il

L VERB DISplay L AS —I: SYNtax ——:]—J
PUNch COMments
ADD
MODi fy
REPTace
DELete

| LANguage is language I PREpared by user-id

A

Parameters

user-defined-entity-type name is entity-occurrence-name
Identifies a new user-defined entity to be established in the dictionary, or an
existing user-defined entity to be modified, replaced, deleted, displayed, or
punched. User-defined-entity-type must be the 1- through 20-character name of a
class defined with the CLASS TYPE IS ENTITY option. Entity-occurrence-name

Chapter 4. Entity-Type Syntax 4-261

4.29 USER-DEFINED ENTITY

must be a unique 1- through 40-character name within user-defined
entity-type-name.

NEW NAMe is new-entity-name
Specifies a new name for the requested user-defined entity. New-entity-name must
conform to the rules for entity-occurrence-name presented above. This clause
changes only the name of the named entity; it does not alter or delete any
previously defined relationships in which the entity participates. Subsequent
references to the entity must specify the new name. Note that the user-defined
entity occurrence cannot be renamed if DELETION LOCK IS ON (described
below) is specified.

deletion LOCK is
Enables or disables the entity deletion lock.

OFF
Disables the deletion lock; the user can delete or rename the entity occurrence
directly. OFF is the default.

ON
Enables the deletion lock; the user cannot delete or rename the entity. If
DELETION LOCK IS ON is specified, MODIFY user-defined-entity DELETION
LOCK IS OFF must be specified to delete or rename the requested entity
occurrence.

relational-key is AT Tribute attribute-name
Associates the named entity with another entity through a previously defined
relational key. The optional keyword ATTRIBUTE must be specified if the
named class is defined with the same name as the attribute.

WITHIn class class-name
Uniquely identifies an established attribute. This parameter must be specified if
the named attribute does not uniquely identify an established attribute.
Class-name must match the name of a previously defined class.

relational-key is class-name is attribute-name
Associates an occurrence of a class with an occurrence of an attribute or
user-defined entity through a previously defined relational key.

entity-type-name is entity-occurrence-name
Associates (INCLUDE) the named entity occurrence with or disassociates
(EXCLUDE) it from an occurrence of the specified entity type.

WITh/ALSo WITh/WITHOut
Includes or excludes the specified options when the user-defined entity is
displayed or punched. Detailed information for each DISPLAY/PUNCH option is
under 2.4.2, “SET OPTIONS syntax” on page 2-9. The options that are listed
below present special considerations for this entity type.

DETails
Includes the DELETION LOCK specification.

ATTributes
Includes all user-defined entities to which the named user-defined entity is related.

4-262 CA-IDMS IDD DDDL Reference

4.29 USER-DEFINED ENTITY

Example: In the following example, the user-defined entity types DEPARTMENT
and EMPLOYEE are established in the dictionary by means of the CLASS TYPE IS
ENTITY clause of the CLASS statement. DOCUMENTATION and JMP are added as
occurrences of DEPARTMENT and EMPLOY EE, respectively. The employee's birth
date and date of hire can be added by relating two occurrences of DATE to an
occurrence of EMPLOY EE.

add class department
class type is entity.
add class employee
class type is entity.

add department documentation.
add employee jmp

department documentation.
add class date

attributes are automatic

class type is entity.

modify entity attribute
user defined nest is hire
user defined nest is birth.

add employee tim
department is personnel
birth date is 07/05/52
hire date is 02/20/82.

The MODIFY PROGRAM statement relates the predefined program PAYROLL to the
user-defined entity occurrence EMPLOYEE TLM:

modify program payroll
employee is tim.

Chapter 4. Entity-Type Syntax 4-263

4-264 CA-IDMS IDD DDDL Reference

Chapter 5.

Online DDDL Compiler

51 OVerview 5-3
52 Screenformat 5-4
53 Onlinesessions 5-6
531 Beginning asession 5-6
5.3.2 Conducting an online session 5-7
533 Terminating asession 5-8
534 Recovering asession 5-9
54 Onlinecommands 5-10
541 Top-linecommands, 5-10
542 Linecommands 5-12
5.5 Program function keys assigned to operations 5-14

Chapter 5. Online DDDL Compiler 5-1

5-2 CA-IDMS IDD DDDL Reference

5.1 Overview

The DDDL compiler can be executed online to process requests to add, modify,
replace, delete, display, and punch entity-occurrence definitions. The online DDDL
compiler uses the same syntax as the batch DDDL compiler and provides a uniform
screen for manipulating entity-occurrence definitions; separate maps are not required.

Full-screen and line modes: You can enter online requests in 3270 full-screen
mode or in TTY line mode through:

CA-IDMS/IDC

CA-IDMS/UCF

CICs

TIAM

TSO

VM/ESA
The DDDL compiler supports large- and wide-screen 3270-type terminals.
Full-screen mode: In full-screen mode, the online DDDL compiler employs a text
editor that operates independently of the compiler. The text editor writes input to and
output from the DDDL compiler to a work file associated with each session. The work
file can contain multiple pages of compiler input or output; a page is equivalent to the
number of lines on the terminal’s screen. The user manipulates the contents of the
work file by using online text editing commands. The ability to display and modify the

contents of the work file allows the user to edit compiler output and resubmit it as
input.

This chapter describes the format of the online IDD screen, how to conduct an online
IDD session, the online commands that can be used during the session, and the PF
keys assigned to various operations.

Chapter 5. Online DDDL Compiler 5-3

5.2 Screen format

5.2 Screen format

In full-screen mode, the online DDDL compiler uses a standard screen that has:

A preformatted top line

An unformatted input/output area

END1 IDD 15.0 ONLINE2 NO ERRORSs DICT=EDUCDICTa 1/69s
DISPLAY REC REC-LAYOUT.
*+ ADD
*+ RECORD NAME IS REC-LAYOUT VERSION IS 1
*+ DATE CREATED IS 08/31/99
*+ TIME LAST UPDATED IS 07491666
*+ PREPARED BY GDJ
*+ RECORD LENGTH IS 240
*+ PUBLIC ACCESS IS ALLOWED FOR ALL
*+ RECORD NAME SYNONYM IS REC-LAYOUT VERSION 1
*+ COPIED INTO MAP TOON-REC VERSION 1 WITHIN PANEL TOON-REC-OLMPANEL
*+ VERSION 1
*+ COPIED INTO MAP GER-OCCU VERSION 1 WITHIN PANEL GER-OCCU-OLMPANEL
*+ VERSION 1
*+ .
*+ RECORD ELEMENT IS LINE-LAYOUT VERSION 1
*+ LINE IS 000100
*+ LEVEL NUMBER IS 02
*+ USAGE IS DISPLAY
*+ ELEMENT LENGTH IS 240
*+ POSITION IS 1
*+ .
*+ SUBORDINATE ELEMENT IS CHAR-LAYOUT VERSION 1
*+ LINE IS 000200

Top line: The top line of the screen contains the following areas (areas are
numbered in the sample screen above):

1

Command area — Provides twenty spaces in columns 2 through 21 for entering
commands to manipulate the work file and to communicate with the DDDL
compiler; these commands are listed under 5.4.1, “Top-line commands’ on

page 5-10 later in this chapter; they are described in detail in CA-IDMS Online
Compiler Text Editor.

Name area — Displays the name of the compiler and the release number.

M essage area — Displays one of the following, as appropriate: the work-file
page and line number; the literal NO ERRORS; the number of error messages
issued for the compile; or a message describing the status of a top-line command.

Dictionary area — Displays either the name of the current dictionary (if other
than the default) or the literal BLK, which signifies use of a line command.

Line number area — Displays one of the following, as appropriate: the literal
EMPTY or the top (current) line of the screen /O area, followed by the total
number of lines (last line) in the work file.

5-4 CA-IDMS IDD DDDL Reference

5.2 Screen format

Input/output area: Below the screen's top line, the input/output area covers the
remainder of the screen. The online DDDL compiler uses a line length of 79
regardless of the terminal width; however, the number of lines displayed varies based
on the type of terminal in use.

Chapter 5. Online DDDL Compiler 5-5

5.3 Online sessions

5.3 Online sessions

An online DDDL session begins when the user signs on to the compiler and ends
when the user signs off from the compiler or otherwise terminates the session. The
user can also suspend a session and transfer to another online CA-IDMS software
component.

The following considerations about online sessions are discussed in the following
subsections:

= Beginning a session

» Conducting a session

. Terminating a session

® Session recovery

5.3.1 Beginning a session

To begin an online session:

1. Sign on to the host teleprocessing (TP) monitor, according to site-standard
procedures.

2. Enter one of the following:

® Site-standard task code that invokes the online DDDL compiler; the
installation default is IDD.

» Site-standard task code that invokes the online DDDL compiler under the
transfer control facility (TCF); the installation default is IDDT. For a
complete description about using online IDD under TCF, refer to the
CA-IDMS Transfer Control Facility manual.

3. Optionaly, enter the SSIGNON command on the first line of the screen 1/0 area.
If the SET OPTIONS statement specifies SECURITY FOR IDD SIGNON IS ON,
SIGNON must be the first command issued in the session; see 2.2, “SIGNON
statement” on page 2-4 for additional information.

4, Optionaly, enter a SET OPTIONS statement to establish session- or
dictionary-specific processing options; see 2.4, “SET OPTIONS statement” on
page 2-8 for additional information.

You can also initiate an online DDDL compiler session from another online
component by using the transfer control facility; for additional information, refer to the
CA-IDMS Transfer Control Facility manual.

5-6 CA-IDMS IDD DDDL Reference

5.3 Online sessions

5.3.2 Conducting an online session

The following table provides guidelines for conducting an online IDD session.

Guideline for:

Description

Types of statements

Enter ADD, MODIFY, REPLACE, DELETE,
DISPLAY/PUNCH, and INCLUDE statements in the
screen /O area

Cursor movement

Use the TAB, BACK TAB, and CURSOR keys to move
the cursor around the screen I/O area and to position the
cursor in the command area.

Text-editing commands

Use online text-editing commands, discussed in 5.4.2,
“Line commands’ on page 5-12 later in this chapter, to
manipulate the contents of the work file.

End-of-file indicator

Specify a logical end-of-file indicator to establish the
point at which input from the work file to the DDDL
compiler isto end. A default end-of-file indicator of /*
is established during IDD instalation. The user can
change this indicator on a dictionary or session basis by
using the SET OPTIONS statement EOF clause.

Suspending IDD

Transfer from online IDD to another online CA-IDMS
component, then resume the original IDD session, using
the transfer control facility. The user moves from one
online session to another by means of the top-line
SWITCH command, described later in this chapter, and
the transfer control facility Selection screen. (refer to the
CA-IDMS Transfer Control Facility manual.)

Input and output are displayed: The online compiler displays each input
statement, followed by the requested output. For example:

display first 2 records.

*+ display record name is cust-rec version is 1.
*+ display record name is cust-rec version is 2.

Error handling: The online DDDL compiler responds to errors encountered in

source input statements by:

® Indicating the total number of E-level errors from the most recent compiler
execution in the message area of the screen.

m Listing error messages on the line immediately following the line in error. Each
message is preceded by *+, which indicates that the text is commentary only; if
the screen is resubmitted, the message text is ignored by the DDDL compiler.

Chapter 5. Online DDDL Compiler 5-7

5.3 Online sessions

Using HELP DC to debug: To aid the debugging process, you can issue a HELP
DC command to obtain a detailed online description of any error or warning message
produced in a DDDL compiler run. The user must type the HELP DC command in
the screen /O area.

Syntax for the HELP DC command is as shown below, where message-id must be the
6-digit identifier associated with the error or warning message.

v
A

»»—— HELp _I:____:]_ message-id
DC

For example, to display information about message 601034, enter:
help 601034

or enter:

help dc601034

The online DDDL compiler responds with the ID, severity, text, and explanation
associated with the message, as follows:

*+ E DC601034 INVALID VERSION

*+

*+ An invalid version specification has been
*+ encountered. The version number is too

*+ long or contains nonnumeric characters.
*+ Supply a valid version number according
*+ to the syntax rules.

»> For descriptions of all DDDL compiler messages, refer to CA-IDMS Messages and
Codes.

5.3.3 Terminating a session

To end an online session, choose one of the following options:

» Enter SIGNOFF, LOGOFF, or BYE on the first line of the screen 1/0 area
and press ENTER.

This terminates the full-screen text editor, deletes the contents of the work file,
clears the default processing options established for the session, and displays the
session transaction summary. After reviewing the transaction summary, press
CLEAR.

. Enter END in the command area and press ENTER.

This terminates the session and clears the contents of the work file; the transaction
summary is not displayed. Control is returned directly to the host TP monitor.

5-8 CA-IDMS IDD DDDL Reference

5.3 Online sessions

5.3.4 Recovering a session

Consider the termination situations shown in the following table when you recover a
DDDL compiler session.

Termination situation Effect

The DDDL compiler, centra All updates made to the dictionary during the
version, or DC/UCF system session remain intact. The contents of the work file
terminates abnormally during and the default session options are lost.

an online DDDL compiler

session.

The DDDL compiler You can resume after recovering the session using
terminates abnormally. the compiler task code. The session resumes at the

point before which the last command was entered;
text changes made to the last screen are applied to
the work file.

Chapter 5. Online DDDL Compiler 5-9

5.4 Online commands

5.4 Online commands

The commands that direct an online session of the DDDL compiler and manipulate the
contents of the work file fal into two categories:

® Top-line commands

® Line (or text-editing) commands

These commands are listed and described in the following two subsections.

Note: For alist of program function (PF) keys you can use as alternatives to top-line
commands, see 5.5, “Program function keys assigned to operations’ on
page 5-14, later in this chapter.

For detailed information on using top-line commands, line commands, and PF
keys, refer to the CA-IDMS Online Compiler Text Editor manual.

5.4.1 Top-line commands

Top-line commands are used to direct an online DDDL compiler session. The user
enters top-line commands in the command area of the screen.

The top-line commands described in the following table are available for use with the
online DDDL compiler. Note that all commands, with the exception of RESHOW,
update both the screen and the work file.

5-10 CA-IDMS IDD DDDL Reference

5.4 Online commands

Top-line command

Description

APPLY

Updates the screen and work file but does not execute
the DDDL compiler.

CLEAR Deletes al data contained in the work file.

DISPLAY LINE Displays a page of the work file, starting with the
specified line.

DISPLAY PAGE Displays the requested page from the work file.

END Immediately terminates the current session.

ENTER Sets the ENTER key to execute the APPLY or the
UPDATE command (described below).

ESCAPE Establishes the escape character that must be used with
line commands.

FIND Locates a character string by searching forward or
backward in the work file.

HELP Lists each top-line command and the PF key currently
assigned to execute that command.

INSERT Inserts lines into the work file after the line at which the

cursor is positioned.

PRINT (DC/UCF only)

Prints the contents of the work file.

REPEAT Repeats the line at which the cursor is positioned.

RESHOW Cancels all changes made to the current screen and
redisplays the previous screen.

SUSPEND Suspends the current session and returns control to the
host TP monitor.

SWAP Restores the screen and the work file to their condition

prior to the last execution of the compiler.

SWITCH (only if the

DDDL compiler is
executing under the

control of the Transfer

Control Facility)

Suspends the session and transfers control to the
specified online CA-IDMS component or to the transfer
control facility Selection screen.

UPDATE

Updates the work file and executes the DDDL compiler.

Abbreviating top-line commands: You can abbreviate top-line commands to a
minimum of three characters, except for:

® FIND which can be abbreviated to F

= PRIOR which can be abbreviated to PRIO (four characters distinguish it from the

keyword PRINT)

Chapter 5. Online DDDL Compiler 5-11

5.4 Online commands

To enter atop-line command, either type the command on the top line of the screen
and press ENTER or use the program function (PF) key assigned to the desired
function (see 5.5, “Program function keys assigned to operations’ on page 5-14).

5.4.2 Line commands

Line commands, also called text-editing commands, are used to copy, delete, move,
and repeat lines or blocks of lines within a work file.

How to enter a line command: A line command consists of a one- to
three-character value followed by a space.

These commands must begin with the escape character (%) which signals to the text
editor that the line contains a command. Enter a command in column 1 of the line to
which it applies, and end the command with a space. For detailed information on
using line commands, refer to the CA-IDMS Online Compiler Text Editor manual.
Line commands are listed in the following table. Note that:

® The percent sign (%) is the default escape character.

® n represents the number of lines (including the current and subsequent lines) to
which the operation applies.

= The (space) represents the mandatory space that must follow each line command.

5-12 CA-IDMS IDD DDDL Reference

5.4 Online commands

Operation Command for mat
After %A (space)
Before %B (space)
Copy Copy asingle line:

%Cn (space)

Copy a block of lines:
%CB (space) (on the first line of the block)
%CE (space) (on the last line of the block)

Delete Delete a single line:
%Dn (space)
Delete a block of lines:
%DB (space) (on the first line of the block)
%DE (space) (on the last line of the block)

Move Move a single line:
%Mn (space)
Move a block of lines:
%MB (space) (on the first line of the block)
%ME (space) (on the last line of the block)

Repeat Repeat a single line:
%Rn (space)
Repeat a block of lines:
%RB (space) (on the first line of the block)
%RE (space) (on the last line of the block)

Chapter 5. Online DDDL Compiler 5-13

5.5 Program function keys assigned to operations

5.5 Program function keys assigned to operations

Program function (PF) keys can be used as an alternative to typing top-line commands.
To display the current PF-key assignments, use the top-line HELP command.

The following table lists the PF keys established as installation defaults for the DDDL

compiler.
PF key Corresponding online command and description
EE; Egg DISPLAY PAGE NEXT
Scrolls forward one page
EE; EH@ DISPLAY PAGE PRIOR
Scrolls backward one page
PF3, PF15 DISPLAY LINE NEXT
Scrolls forward one line
PF4, PF16 INSERT
Inserts up to a full screen of lines
PF5, PF17 APPLY
Updates screen contents and work file but does not
invoke the compiler
PF6, PF18 UPDATE
Updates work file and executes the compiler
PF9, PF21 SWAP
Restores work-file contents
PF12, PF24 PRINT
Prints work-file contents (DC/UCF only)
PA1 Cancel FIND
Cancels the FIND command
PA2 RESHOW
Cancels changes to the current screen and redisplays
the screen
CLEAR CLEAR
Clears the work file
ENTER=APPLY Updates the screen and work file
ENTER=UPDATE Updates the work file and executes the compiler

5-14 CA-IDMS IDD DDDL Reference

Chapter 6. IDD Menu Facility

6.1 OVErview 6-3
6.2 Screenformats 6-4
6.21 Fixedscreens 6-4
6.22 Pageablescreens 6-5
6.3 Using menu facility screens 6-8
6.3.1 Predefined control keys 6-8
6.3.2 Cursor positioning 6-9
6.3.3 Message display and field highlighting 6-10
6.3.4 Default value assignment 6-10
6.35 Helpscreens 6-11
6.4 Onlinecommands 6-12
6.4.1 Toplinecommands 6-12
6.4.2 Linecommands 6-13
6.5 Conducting a menu facility session L. 6-15
6.5.1 Beginning @asession 6-15
6.5.2 Navigatingscreens 6-16
6.5.3 Displaying entity occurrences 6-19
6.5.4 Adding entity occurrences 6-19
6.5.5 Modifying entity occurrences 6-19
6.5.6 Deleting entity occurrences 6-20
6.5.7 Terminating @asession 6-20
6.6 Descriptions of IDD menu fecility screens 6-21
6.6.1 Entry and processingscreens 6-21
6.6.2 Screenscommonto al entity types 6-22
6.6.3 ATTRIBUTE entity screens 6-23
6.6.4 CLASSentity screens 6-24
6.6.5 ELEMENT entity screens 6-25
6.6.6 FILEentityscreens 6-26
6.6.7 MESSAGE entity screens 6-27
6.6.8 MODULE entity screens 6-28
6.6.9 PROCESS entity screens 6-29
6.6.10 PROGRAM entity screens 6-29
6.6.11 QFILE entity screens 6-31
6.6.12 RECORD entity screens 6-32
6.6.13 SYSTEM entity screens 6-33
6.6.14 TABLE entity screens 6-34
6.6.15 USER entity screens 6-35
6.7 Samplesession 6-38

Chapter 6. IDD Menu Facility 6-1

6-2 CA-IDMS IDD DDDL Reference

6.1 Overview

An alternative to freeform online IDD input, the IDD menu facility guides you through
a series of standard, fixed-format screens. The menu facility supports all basic
non-teleprocessing DDDL compiler options and entity-type syntax except REPORTS,
TRANSACTIONS, and ENTRY POINTS.

Because the IDD menu facility calls the DDDL compiler, the entity types and
parameters that apply to the batch and online IDD environments apply to the menu
facility as well. Only the method of input is different; menu facility screens present
the available options and provide fields in which to input the definition.

This chapter presents how to use the IDD menu facility to define an entity occurrence
in the dictionary.
The following topics are discussed:
® Screen formats
® Using menu facility screens
= Online commands
® Conducting a menu facility session
® Descriptions of IDD menu facility screens
A sample session follows at the end of the chapter.

»» For complete definitions of parameters listed on screens, see Chapters 1 through 4
of this manual.

Chapter 6. IDD Menu Facility 6-3

6.2 Screen formats

6.2 Screen formats

IDD menu facility features two types of screen design: fixed (nonpageable) and
pageable. The two screen types are discussed separately in this section.

6.2.1 Fixed screens

Fixed screens provide session, entity-occurrence, and control-key information.
The following is an example of a fixed screen.

Example of a fixed screen:

IDD REL 15.0 #%% RECORD ENTITY RECD
—>
RECORD 'DEPARTMENT' VERSION 1 DISPLAYED
X DISPLAY RECORD NAME.....: DEPARTMENT
_ MODIFY
~ ADD VERSION NUMBER..: 1 _ HIGHEST _ NEXT HIGHEST
~ DELETE ~ LOWEST ~ NEXT LOWEST
DESCRIPTION.....:
RECORD LENGTH...: 56
_ RELM = RECORD ELEMENTS <PF9> _ COBL = COBOL ELEMENTS <PF1l>
T RELL = REC ELEMENT LIST <PF10> " RECX = RECORD EXTENSION
T REGN = USER REGISTRATION <PF2> T PUBL = PUBLIC ACCESS <PF3>
T CLAT = CLASS/ATTRIBUTES <PF4> " RKEY = RELATIONAL KEYS <PF5>
T COMM = COMMENTS <PF6> T COML = COMMENT KEY LIST <PF7>
HIST = HISTORY <PFg> T COPY = COPY FROM/SAME AS
" XREF = CROSS REFERENCE " HELP = HELP <PF1>

Three areas of a fixed screen: The IDD menu facility fixed screens are divided
into three areas:

» Heading and message area

® Specification area

® Screen selection area
Heading and message area: The heading and message area contains a
preformatted first line, the command area, and the message line;

» The first line contains the simulated PF-key field, the product name, the release
number, the screen title, and the screen name. The screen title identifies the
screen; the screen name is a 4-character symbol used to reference the screen.

Note: The simulated PF-key field is an untitled 2-character field that can be used
if the terminal is not equipped with program function (PF) keys. For

6-4 CA-IDMS IDD DDDL Reference

6.2 Screen formats

additional information about this field, see 6.3.1, “Predefined control keys”
on page 6-8 later in this chapter.

® The second line contains an arrow pointing to the command area. The command
area can be used to:

— Move from one screen to another by typing in a screen name
— Leave the session by entering DDDL top-line commands such as SUSPEND

Use of the command area is described in detail under 6.5, “Conducting a menu
facility session” on page 6-15 later in this chapter. For alist of top-line
commands, see 5.4.1, “Top-line commands’ on page 5-10.

= The message line prompts you for additional information or actions, indicates that
your response has been processed, or explains why information has not been
processed. The message line is described in detail in 6.3.3, “Message display and
field highlighting” on page 6-10 later in this chapter.

Specification area: The specification area contains fields that identify and define
an entity occurrence or signon information.

Screen selection area: The screen selection area lists subordinate screens that are
available in order to select the next action. The selection area is formatted with
entity-specific options on the first lines and general options on the lower lines. For
additional information, see 6.5.2, “Navigating screens’ on page 6-16, later in this
chapter.

6.2.2 Pageable screens

Pageable screens allow menu facility users to submit many source statements or
options to the DDDL compiler. Pageable screens are identified by the upper right
corner, which displays page and line numbers in the following format:

PAGE page-number LINE line-number

The following is an example of a pageable screen.

Example of a pageable screen:

Chapter 6. IDD Menu Facility 6-5

6.2 Screen formats

IDD REL 15.0 *x%% COBOL ELEMENTS =+ COBL
—-> PAGE 1 LINE 1 1/36
RECORD 'DEPARTMENT' VERSION 1

ey i (S
02 DEPT-ID
PICTURE IS 9(4)
USAGE IS DISPLAY
*+ ELEMENT LENGTH IS 4
*+ POSITION IS 1
ELEMENT NAME SYNONYM IS DEPTID
FOR RECORD SYNONYM DEPARTMT VERSION 1
ELEMENT NAME SYNONYM IS DPID
FOR RECORD SYNONYM DEPT VERSION 1

02 DEPT-NAME
PICTURE IS X(45)
USAGE IS DISPLAY
*+ ELEMENT LENGTH IS 45
*+ POSITION IS 5
ELEMENT NAME SYNONYM IS DEPTNAME
FOR RECORD SYNONYM DEPARTMT VERSION 1
ELEMENT NAME SYNONYM IS DPNAME
FOR RECORD SYNONYM DEPT VERSION 1

Two areas of a pageable screen: DD menu facility pageable screens are
divided into two areas:

» Heading and message area

® Specification area

Heading and message area: The heading and message area contains a
preformatted first line, the command area, and the message line:

» The first line contains the simulated PF-key field, the product name, the release
number, the screen title, and the screen name. The screen title identifies the
screen; the screen name is a 4-character symbol used to reference the screen.

Note: The simulated PF-key field is an untitled 2-character field that can be used
if the terminal is not equipped with program function (PF) keys. For
additional information about this field, see 6.3.1, “Predefined control keys’
on page 6-8 later in this chapter.

® The second line contains an arrow pointing to the command area. The command
area can be used to:

— Move from one screen to another by typing in a screen name.

— Manipulate the definition in the dictionary or leave the session by entering
DDDL top-line commands such as SUSPEND or REPEAT.

Use of the command area is described in detail under 6.5, “Conducting a menu
facility session” on page 6-15 later in this chapter. For alist of top-line
commands, see 5.4.1, “Top-line commands’ on page 5-10.

® The message line prompts you for additional information or actions, indicates that
your response has been processed, or explains why information has not been

6-6 CA-IDMS IDD DDDL Reference

6.2 Screen formats

processed. The message line is described in detail in 6.3.3, “Message display and
field highlighting” on page 6-10 later in this chapter.

Specification area: The specification area contains screen-specific information
according to the type of pageable screen. For example, in a pageable screen that
contains text, the specification area is unformatted. In a pageable screen that identifies
relationships between two entities, the specification area is formatted with blocks of
lines that represent a relationship.
Two types of pageable screens: There are two types of pageable screens:

m Screens that contain text

® Screens that identify relationships between two entities
The following text describes how paging works for each of the two screen types.

Screens that contain text: On these screens, each line of text is considered one line
of data. Aswith online IDD screens, text is typed in freeform style. A column scale
at the top of the screen makes formatting easier.
Examples of screens that contain text:

® Comments screen

®» Module Source screen
Screens that identify relationships: On these screens, each group of lines that
represents an entity is considered one line of data.
Examples of screens that identify relationships:

® Within Systems screen

® Record Elements screen

Chapter 6. IDD Menu Facility 6-7

6.3 Using menu facility screens

6.3 Using menu facility screens

The IDD menu facility provides the following features that allow efficient access and
use of screens:

» Predefined control keys

» Cursor positioning

. Message display and field highlighting
» Default value assignment

» Help screens

These features and the functions they perform are explained in this section.

6.3.1 Predefined control keys

Control keys and their associated functions are predefined under the IDD menu
facility. Control key assignments fall into two categories: globa and local. These two
categories are discussed, followed by a description of using PF-key simulation (for
terminals with no PF keys).

Global control keys: Globa control keys always perform the same functions
during a menu facility session. Menu facility global-control key assignments
correspond to online IDD control-key assignments. Online IDD control-key
assignments are established during IDD installation or with the system generation
compiler.

Installation defaults for global control keys are shown in the following table.

6-8 CA-IDMS IDD DDDL Reference

6.3 Using menu facility screens

Control key Description

ENTER Submits information through the IDD menu facility for
processing.

CLEAR Displays the previous screen. You can press CLEAR from the
Master Selection screen to leave the IDD menu facility and
return to the DC/UCF system.

PA1 Clears fixed screens; on pageable screens, PA1 cancels a

FIND command.

PA2 Refreshes the screen. Pressing PA2 cancels changes just typed
on the screen. The screen is rewritten as it appeared the last
time you pressed a control key.

PF1 Invokes the HEL P function of the IDD menu facility; the
appropriate help screen is displayed for the current IDD option
or entity type. For further information about help screens, see
6.3.5, “Help screens’” on page 6-11 later in this chapter.

PF7 Scrolls backward to the previous page of the pageable screen.

(pageable screens
only)

PF8 Scrolls forward to the next page of the pageable screen.

(pageable screens
only)

Local control keys: The screen that aloca control key invokes depends on the
screen from which it is pressed. Each screen selection area lists the local control-key
assignments for that screen. For example, PF7 invokes the Record Entity screen from
the Master Selection screen.

PF key simulation: On terminals that have no PF keys, you can perform PF-key
related functions by using PF-key simulation. To activate PF-key simulation, type any
character in the PF-KEY SIMULATION ON field on the Master Selection screen. To
request the next action from any menu facility screen, type a 1- or 2-digit PF key
number in the simulated PF key field and press ENTER. For example, to perform the
function associated with PF2, type 2 in the smulated PF-key field and press ENTER.

6.3.2 Cursor positioning

On all IDD menu facility screens, you can enter or change information only in
response fields. To move the cursor quickly between menu facility response fields, the
cursor control keys can be used in conjunction with the tab, back tab, or return keys.

When the cursor is positioned at a response field, you can type in new information or
replace existing information. The space bar or the erase end-of-field key can be used

Chapter 6. IDD Menu Facility 6-9

6.3 Using menu facility screens

to delete characters across the response field. The cursor control keys can be used to
move across the response field without deleting characters.

6.3.3 Message display and field highlighting

The IDD menu facility displays messages and highlights fields in response to the use
of a screen.

Message display: Messages are displayed on the message line. They:
® Request that additional information be supplied
» Inform you about the next required action
® Confirm the results of current processing

® |ndicate why information has not been processed

Field highlighting: Highlighting is used in conjunction with a message to reference
arelated field on the screen. The IDD menu facility highlights fields that have been
modified or those that are in error. Screen names and the cursor position are also
highlighted.

Error Display screen: When the menu facility returns a message that appears to be
truncated, you can request the Error Display screen by typing ERRS in the command
area. The Error Display screen displays the IDD DDDL syntax that corresponds to the
requested entity options; error messages are listed immediately following each line in
error. Error messages consist of the message identifier, the line (CARD) number and
word that caused the processing error, and the message text.

After identifying the error, you can return to the screen on which the error occurred by
pressing the CLEAR key. You can then correct the error and resubmit the entity
options to the compiler.

6.3.4 Default value assignment

The IDD menu facility automatically supplies default values in many response fields.
These default values allow you quick access to information most likely to be used in
response fields.

You can accept a default value or override it by typing the appropriate value over the
default. In most cases, even if the new value is placed in a separate response field
from the default field, IDD menu facility automatically recognizes the new information
and ignores the default value.

Example of overriding a default: For example, on the Display All screen, the
default value for the COMPARISON ACTION field is EQ (equal). To override the
default, you type an x in the CONTAINS field.

6-10 CA-IDMS IDD DDDL Reference

6.3 Using menu facility screens

IDD REL 15.0 *x%% DISPLAY ALL === DISP
>
DISPLAY PROCESSING ORDER..:X FIRST _ NEXT _ LAST _ PRIOR _ ALL
NUMBER OF OCCURRENCES.....:20
OF ENTITY TYPE............:_ ATTRIBUTES _ PROCESSES _ TABLES
_ CLASSES _ PROGRAMS _ USERS
x ELEMENTS _ QFILES _ MESSAGES
_ FILES _ RECORDS
MODULES SYSTEMS

_ MODULES ONLY (WITHOUT PROCESSES, QFILES, TABLES)
_ USER DEFINED ENTITY...:

WHERE 'VALUE'/FIELD....:name

COMPARISON ACTION..:X EQ _ NE _ 6T _GE _ LT _LE
x CONTAINS ~ —_ MATCHES

'"VALUE'/FIELD....:'w-emp'
OR 'VALUE'/FIELD....:
OR 'VALUE'/FIELD....:

6.3.5 Help screens

The IDD menu facility features an online help screen for each menu facility screen.
Each help screen contains the following:

Requesting a help screen:

Table of contents

List of global control keys
Description of screen usage
Specia rules, if any

List of screen titles and names

Overview of the IDD menu facility

To request a help screen, choose one of the following

options:

Exiting a help screen:

Type HELP in the command area and press ENTER.
Press PF1.

If applicable, type a nonblank character in the appropriate field in the screen
selection area and press ENTER.

To exit a help screen and return to the previous screen,

press CLEAR.

Chapter 6. IDD Menu Facility 6-11

6.4 Online commands

6.4 Online commands

The commands that direct an IDD menu facility session and manipulate the contents of
pageable screens fall into two categories: top-line commands and line commands.
These types of commands are described in this section.

Note: For complete information regarding the menu facility online commands, see
CA-IDMS Online Compiler Text Editor.

6.4.1 Top-line commands

Top-line commands are used to direct a menu facility session. You enter top-line
commands in the command area on any screen.

To enter atop-line command, either type the command in the command area and press
ENTER or use the assigned global control key. For alist of control keys, see 6.3.1,
“Predefined control keys’ on page 6-8 earlier in this chapter. For an in-depth
discussion of menu facility top-line commands, refer to CA-IDMS Online Compiler
Text Editor.

The following table lists and describes the top-line commands available to the IDD
menu facility. An asterisk (*) identifies those commands which apply to pageable
screens only.

6-12 CA-IDMS IDD DDDL Reference

6.4 Online commands

Top-line command

Description

END

Immediately terminates the current session.

HELP

Invokes the help tutorial associated with the current screen
(refer to 6.3.5, “Help screens’ on page 6-11 for additional
information).

SUSPEND

Suspends the current session and returns control to the host
TP monitor.

SWITCH

(only if the IDD menu
facility is executing

under the control of the
transfer control facility)

Suspends the session and transfers control to the specified
online CA-IDMS component or to the transfer control
facility selection screen.

APPLY *

Updates the screen but does not submit the screen to the
DDDL compiler.

DELETE ALL *

Deletes al information contained in all pages of the
pageable screen.

DISPLAY LINE *

Displays the requested line at the top of the screen.

DISPLAY PAGE *

Displays the requested page of the pageable screen.

ENTER *

Sets the ENTER key to execute the APPLY or the
UPDATE command.

ESCAPE *

(pageable screens that
contain text only)

Establishes the escape character that must be used with
line commands.

FIND *

Locates a character string by searching forward or
backward within the pageable screen.

INSERT * Inserts new text or definitions into the pageable screen.
REPEAT * Repeats the line at which the cursor is positioned.
(pageable screens that

contain text only)

UPDATE * Updates the screen and invokes the DDDL compiler.

6.4.2 Line commands

Line commands (also called text-editing commands) move, copy, delete, or repeat a
line or group of lines in a pageable screen that contains text or source code statements.

Note: For alist of line commands that apply to the IDD menu facility, see 5.4.2,
“Line commands’ on page 5-12.

Chapter 6. IDD Menu Facility 6-13

6.4 Online commands

Line command syntax and rules are fully documented in the CA-IDMS Online
Compiler Text Editor document.

6-14 CA-IDMS IDD DDDL Reference

6.5 Conducting a menu facility session

6.5 Conducting a menu facility session

An IDD menu facility session begins when you invoke the IDD menu facility at the
ENTER NEXT TASK CODE system prompt. The session ends when you exit the
menu facility and returns control to the system.

To conduct a menu facility session, you should understand the following activities:

Beginning a session

Navigating screens

Displaying entity occurrences

Adding entity occurrences

Modifying entity occurrences

Deleting entity occurrences

Terminating a session

Each of these activities is discussed separately in this section.

6.5.1 Beginning a session

To begin an IDD menu facility session:;

1. Sign on to the system.

2. Enter the task code that invokes the menu facility. The installation default is
IDDM. The menu facility displays the Master Selection screen.

3. Sign on to the menu facility by using one of the following methods:

® Pressthe ENTER key. The menu facility automatically accepts the signon
information.

» Explicitly provide the appropriate information and press ENTER.

This method must be used in the following situations:

IDD has been used to establish security for the dictionary to be accessed
by the menu facility. You must identify the user name and, optionally, a
password. The identified user must have been assigned IDMS-DC
authority through the AUTHORITY clause of the USER statement (see
4.28, “USER” on page 4-236).

A DDS user needs to specify the node name of the central version that
controls the dictionary to be accessed by the menu facility.

You want to access a dictionary other than the default dictionary.

Y ou want to override the default usage mode (shared update) in which
the DDDL compiler is to access the dictionary.

Chapter 6. IDD Menu Facility 6-15

6.5 Conducting a menu facility session

After the menu facility confirms a successful signon, you can establish session-specific
processing options by selecting the Session Options screen. To select this screen,
either type the screen name OPTI in the command area of the Master Selection screen
or type any nonblank character in the appropriate field in the screen selection area

»» For information about each processing option offered on the Session Options
screen, see 2.4, “SET OPTIONS statement” on page 2-8. For additional information
about requesting screens, see 6.5.2, “Navigating screens.”

6.5.2 Navigating screens
The IDD menu facility consists of the Master Selection screen and subordinate screens
arranged in a hierarchical structure. To implement a definition in the dictionary, you

must navigate through the menu facility, choosing the next screen.

Screen descriptions: The following table shows the names of screens and what
can be done from each screen.

6-16 CA-IDMS IDD DDDL Reference

6.5 Conducting a menu facility session

Screen

Description

Master Selection screen

This screen is at the top of the IDD menu facility
structure. From the Master Selection screen, you can:

= Transfer to an Entity screen to process a definition

m Transfer to the Session Options screen or the
Display All screen

B Press CLEAR to terminate the session

Entity screens

These screens identify the entity type and occurrence to
be defined. From an Entity screen, you can:

» Transfer to a subordinate screen to further define
the entity occurrence

® Transfer to another Entity screen to begin another
definition

® Go back to the Master Selection screen

Subordinate screens

These screens complete the entity-occurrence definition.
From a subordinate screen, you can:

» Transfer to a lower level subordinate screen to
further define the entity occurrence

® Transfer to any screen on the same level within the
entity occurrence

® Return to a higher level screen within the same
entity occurrence

® Return back to the current Entity screen or to any
other Entity screen to begin another definition

»» For additional information on screens, see 6.6, “Descriptions of IDD menu facility
screens’ on page 6-21 later in this chapter.

Selecting screens: You can select screens using any of the following methods:

» Enter any character at the underscore that immediately precedes a screen name
listed in the screen selection area and press ENTER.

» Enter a screen name in the command area and press ENTER.

® Press the appropriate global or local control key.

» Type the PF-key number in the simulated PF-key field and press ENTER.

® Press CLEAR to return to the prior screen.

Chapter 6. IDD Menu Facility 6-17

6.5 Conducting a menu facility session

Note: Returning to the prior screen by pressing CLEAR does not process
changes on the current screen. To apply any changes to the definition, be
sure to press ENTER before pressing CLEAR.

Considerations for entering a screen name: The following considerations apply
when you enter a screen name to select the next screen:

= You can request an entity screen by typing the DDDL entity type, rather than the
screen name. For example, to access the RECD screen, you can type RECORD in
the command area. The aternatives are listed as follows:

Screen name DDDL Entity-type name
ATTR ATTRIBUTE
CLAS CLASS

ELEM ELEMENT
FILE FILE

MSGS MESSAGE
MODU MODULE
PROC PROCESS
PROG PROGRAM
QFIL QFILE

RECD RECORD
SYST SYSTEM
TABL TABLE

USER USER

ENTY Not applicable

® To eliminate keystrokes when selecting an entity occurrence, you can do either of
the following:

— Type only the first three letters of the screen name or the DDDL entity type.
Certain screens, such as PROC or PROG, must be invoked using the first four
letters to ensure accuracy. For example, to request the Message Entity screen,
type MSG in the command area.

— Type the screen name or DDDL entity type followed by the name of the
entity occurrence. For example, to display the DENTAL-CLAIM record, you
type REC DENTAL-CLAIM in the command area.

The entity-occurrence name consists of one parameter; version number or
other qualifiers are not acceptable. When more than one entity occurrence
exists in the dictionary, the menu facility displays the default version number
of the requested occurrence.

6-18 CA-IDMS IDD DDDL Reference

6.5 Conducting a menu facility session

6.5.3 Displaying entity occurrences

To display an entity occurrence previously defined in the dictionary:

1. Request the appropriate Entity screen.

2. Enter the entity-occurrence name (and version number, if appropriate).

3. Press ENTER.
The default verb is DISPLAY. The menu facility automatically recognizes the request,
displays the definition on the Entity screen, and returns a confirmational message on

the message line. You can request subordinate screens to display the complete
entity-occurrence definition.

6.5.4 Adding entity occurrences

To add a new entity-occurrence definition to the dictionary:
1. Request the appropriate Entity screen.
2. Enter the entity-occurrence name (and version number, if appropriate).

3. Type a nonblank character at the underscore that immediately precedes the ADD
literal.

4. Press ENTER.
The menu facility automatically recognizes that the ADD request overrides the default

DISPLAY request, submits the syntax to the DDDL compiler, and returns a message
confirming that the definition has been added to the dictionary.

You can continue to define the entity occurrence by requesting subordinate screens.
The menu facility automatically updates the new entity-occurrence definition in the
dictionary when you request a subordinate screen and/or press ENTER.

6.5.5 Modifying entity occurrences

To modify an entity occurrence previously defined in the dictionary:
1. Request the appropriate Entity screen.
2. Enter the entity-occurrence name (and version number, if appropriate).
3. Press ENTER to display the occurrence to be modified.

For example, to modify a record called CUST-REC, the user first displays the
occurrence by requesting the Record Entity screen and typing in the record name
CUST-REC.

4. Choose one of the following actions:

» |f the information to be modified is located on the Entity screen: change the
information, type a nonblank character at the underscore that immediately
precedes the MODIFY literal, and press ENTER.

Chapter 6. IDD Menu Facility 6-19

6.5 Conducting a menu facility session

® |f the information to be modified is located on a subordinate screen, transfer
to the screen that contains the information to be modified and submit the
changes.

Updating relationships between entity occurrences: On some subordinate screens
(for example, the User Registration screen), you can update relationships between the
named entity occurrence and other entity occurrences:

® To replace one relationship with another, you can type the new definition over the
obsolete definition.

® To delete or disassociate a definition from the named occurrence, you can display
the obsolete definition, then perform one of the following procedures:

— FErase, space over, or blank out the related occurrence name and press
ENTER.

— Type anonblank character at the underscore that immediately precedes the
EXCLUDE option of the appropriate definition and press ENTER.

6.5.6 Deleting entity occurrences

To delete an entity occurrence previously defined in the dictionary:
1. Request the appropriate Entity screen.

2. Enter the name (and version number, if appropriate) of the entity occurrence to be
deleted.

3. Type a nonblank character at the underscore that immediately precedes the
DELETE verb.

4. Press ENTER.

The menu facility automatically recognizes the request, deletes the definition from the
dictionary, and returns a confirmational message that the occurrence has been deleted.

6.5.7 Terminating a session
To end an IDD menu facility session and return control to system, you can choose one
of the following methods:

» Type a DDDL signoff command (SIGNOFF, BYE, END, or LOGOFF) in the
command area and press ENTER.

. Type TOP in the command area and press ENTER to return to the Master
Selection screen. Press the CLEAR key.

® Press CLEAR as many times as needed to move through the menu facility
structure, through the Master Selection screen, and back to the system.

6-20 CA-IDMS IDD DDDL Reference

6.6 Descriptions of IDD menu facility screens

6.6 Descriptions of IDD menu facility screens

These general topics are presented below followed by descriptions of each entity type
and associated screens.

» Entry and processing screens
® Screens common to all entity types
In this discussion, the structure of the IDD menu facility is illustrated by entity type.
For each screen within an entity-type structure, the following information is also listed:
® Screen title
® Screen name

® The aspects of the entity-occurrence definition that can be implemented on the
named screen

Note: Refer to previous chapters in this manual for a complete description of each
entity type and its associated clauses.

6.6.1 Entry and processing screens

The Master Selection screen is the entry screen of the IDD menu facility. From this
screen, you can:

m Select the Session Options screen and/or the Display All screen to define
processing options

m Select an Entity screen to define an entity occurrence

The following figure illustrates the top of the menu facility's hierarchical structure.

TOP

I
OPTI Entity screens I DISP
I
ATTR PROG I
CLAS QFIL | l
ELEM RECD
FILE SYST I
MSGS TABL | DISL
MQODU USER
PROC ENTY I
—_ _ — d

Chapter 6. IDD Menu Facility 6-21

6.6 Descriptions of IDD menu facility screens

The names of the Entity screens that can be selected from the Master Selection screen
are listed. Each Entity screen and its associated subordinate screens are described
separately in this section.

Note: Using the Display All screen, you can select an entity occurrence to be
displayed. The IDD menu facility transfers control to the appropriate Entity
screen to display the occurrence. If you subsequently press CLEAR from the
Entity screen, control returns to the Master Selection screen, not the Display
All List screen.

Entry and processing screens: The following table describes the screens
associated with the menu facility entry and processing options.

Screen name Screen title Description

DISP Display All Defines the criteria to select entity
occurrences for display

DISL Display All List Lists entity occurrences specified on the
Display All screen; allows selection of an
entity occurrence for further display
under the appropriate entity-type screens

OPTI Session Options Defines session processing options
TOP Master Selection Identifies the primary screen; furnishes

signon information; provides access to
subordinate screens

6.6.2 Screens common to all entity types

Certain screens apply generaly to all entity types within the IDD menu facility. These
subordinate screens function at various levels within the menu facility structure. The
figures accompanying the following entity screen description tables show where the
common screens appear in the menu facility structure.

Common screens: The following table describes screens that are common to all
entity types. Each screen can function at various levels within the IDD menu facility.

6-22 CA-IDMS IDD DDDL Reference

6.6 Descriptions of IDD menu facility screens

Screen name Screen title Description

CLAT Clasg/Attribute Associates attributes and classes with an
entity

COML Comment Key List Lists all comment keys defined for an
entity; selects one for review

COMM Comments Associates text with a comment key for
an entity

ERRS Error Display Lists DDDL syntax and messages related
to current processing errors

HELP Help Displays a help tutorial

HIST History Shows the chronological entity history

PUBL Public Access Defines entity security for unregistered
users

REGN User Registration Assigns user registration by entity
occurrence

SHOW Cross Reference Displays information requested on the

Cross Reference selection screen (XREF)

6.6.3 ATTRIBUTE entity scr

eens

The following figure shows the entity screen and subordinate screens associated with
ATTRIBUTE entity definitions. The arrows show the path through these screens.

TOP — ATTR -—

—> REGN —> AELM
> CLAT > AFIL
> AENT > AMOD
> COMM > APRG
> HIST > APRO
> PUBL > AQFI
> RKEY > AREC
> COML > ARPT
L» XREF — SHOW > ASYS

L» ATAB

The following table describes the entity screen and subordinate screens associated with
ATTRIBUTE entity definitions.

Screen name

Screen title

Description

AELM

Attribute Elements

Associates elements with the named
attribute

AENT

Attribute/Entity

Requests display of al occurrences of an
entity type that have the named attribute

AFIL

Attribute Files

Associates files with the named attribute

Chapter 6. IDD Menu Facility 6-23

6.6 Descriptions of IDD menu facility screens

Screen name Screen title Description

AMOD Attribute Modules Associates modules with the named
attribute

APRG Attribute Programs Associates programs with the named
atribute

APRO Attribute Processes Associates CA-ADS processes with the
named attribute

AQFI Attribute Qfiles Associates CA-OLQ dfiles with the
named attribute

AREC Attribute Records Associates records with the named
attribute

ARPT Attribute Reports Associates reports with the named
atribute

ASYS Attribute Systems Associates systems with the named
attribute

ATAB Attribute Tables Associates tables with the named attribute

ATRN Attribute Associates transactions with the named

Transactions attribute

ATTR Attribute Entity Identifies an attribute occurrence

AUSR Attribute Users Associates users with the named attribute

RKEY Relational Keys Associates attributes with the named
attribute through predefined relational
keys

XREF Attribute Requests display of attributes, schemas,

Cross Reference

and/or subschemas that reference the
named attribute in their definitions

6.6.4 CLASS entity screens

The following figure shows the entity screen and subordinate screens associated with
CLASS entity definitions. The arrows show the path through these screens.

TOP —> CLAS - COMM
E HIST
CoML

XREF ——> SHOW

The following table describes the entity screen and subordinate screens associated with
CLASS entity definitions.

6-24 CA-IDMS IDD DDDL Reference

6.6 Descriptions of IDD menu facility screens

Screen name Screen title Description

CLAS Class Entity Identifies a class occurrence

XREF Class Cross Requests display of all attributes
Reference associated with the named class

6.6.5 ELEMENT entity screens
The following figure shows the entity screen and subordinate screens associated with
ELEMENT entity definitions. The arrows show the path through these screens.

Note: The Subordinate Elements (SUBE) screen can be invoked from the Element
Entity (ELEM) screen and the Element Picture (PICT) screen.

TOP —> ELEM -—— REGN
> CLAT RANG
—> COMM VALU
> ELMX
—» HIST ESYN
—»> SUBE PICT — SUBE
> PUBL
—> XREF — SHOW
—» RKEY
> COML
“—» COPY

The following table describes the entity screen and subordinate screens associated with
ELEMENT entity definitions.

Chapter 6. IDD Menu Facility 6-25

6.6 Descriptions of IDD menu facility screens

Screen name

Screen title

Description

COPY

Element Copy

Copies al or specified options of an
element definition into the definition of
the named element

ELEM

Element Entity

Identifies an element occurrence

ELMX

Element Extension

Selects a picture format for definition
and/or renames the requested element;
accesses the Element Picture screen, the
Element Values screen, the Element
Synonyms screen, and the Element
Ranges screen.

ESYN

Element Synonym

Defines element synonyms (alternative
names for an element)

PICT

Element Picture

Associates a picture definition with the
picture format keyword selected on the
Element Extension screen; accesses
subordinate elements associated with a
group element (SUBE)

RANG

Ranges

Assigns valid ranges of values for an
element

RKEY

Relational Keys

Associates elements with the named
element through predefined relational

keys

SUBE

Subordinate Elements

Associates subordinate e ements with a
group element

VALU

Vaues

Assigns an initia value to an element
when it is copied into a program; if the
element is a level-88 item, assigns
multiple values

XREF

Element
Cross Reference

Requests display of elements, records,
reports, and/or transactions that reference
the named element in their definitions

6.6.6 FILE entity screens

The following figure shows the entity screen and subordinate screens associated with
FILE entity definitions. The arrows show the path through these screens.

6-26 CA-IDMS IDD DDDL Reference

6.6 Descriptions of IDD menu facility screens

TOP — FILE — REGN FTYP
FILX ——{::

CLAT FREL
COMM

HIST

FSYN

XREF — SHOW
PUBL

RKEY

COML
CopPY

YRR IV

The following table describes the entity screen and subordinate screens associated with
FILE entity definitions.

Screen name Screen title Description

COPY File Copy Copies all or specified options of afile
definition into the definition of the named
file

FILE File Entity Identifies a file occurrence

FILX File Extension Selects CULPRIT-related file options;

renames the requested file; accesses the
File Type screen and the Related Files

screen
FREL Related Files Associates files with the named file
FSYN File Synonyms Identifies file synonyms (alternative

names for afile)

FTYP File Type Assigns afile type, a VSAM file type,
and/or afile device type

RKEY Relational Keys Associates files with the named file
through predefined relational keys

XREF File Cross Reference Requests display of files, records, reports,
transactions, and/or users that reference
the named file in their definitions

6.6.7 MESSAGE entity screens

The following figure shows the entity screen and subordinate screens associated with
MESSAGE entity definitions. The arrows show the path through these screens.

TOP — MSGS MTXT
COMM
HIST
COML

The following table describes the entity screen and subordinate screens associated with
MESSAGE entity definitions.

Chapter 6. IDD Menu Facility 6-27

6.6 Descriptions of IDD menu facility screens

Screen name Screen title Description
MSGS Message Entity Identifies a message occurrence
MTXT Message Text Line Associates text lines with the named

message

6.6.8 MODULE entity screens

The following figure shows the entity screen and subordinate screens associated with
MODULE entity definitions. The arrows show the path through these screens.

TOP — MODU —

SRCE
MSYS
REGN
CLAT
COMM

HIST
MODX
PUBL
RKEY
comML

YYRRRIIII

COPY

XREF — SHOW

The following table describes the entity screen and subordinate screens associated with
MODULE entity definitions.

Screen name Screen title Description

COoPY Module Copy Copies dl or specified options of a
module definition into the definition of
the named module

MODU Module Entity Identifies a module occurrence

MODX Module Extension Renames the reguested module;
establishes a new language

MSYS Within Systems Associates systems with the named
module

RKEY Relational Keys Associates modules with the named
module through predefined relational keys

SRCE Module Source Associates source text lines with the
named module

XREF Module Requests display of modules, users,

Cross Reference

and/or programs that reference the named
module in their definitions

6-28 CA-IDMS IDD DDDL Reference

6.6 Descriptions of IDD menu facility screens

6.6.9 PROCESS entity screens

The following figure shows the entity screen and subordinate screens associated with
PROCESS entity definitions. The arrows show the path through these screens.

TOP — PROC —

SRCE
PRSY
REGN
CLAT
COMM
HIST
XREF — SHOW
PROX
PUBL
RKEY

COML
COPY

2333 EER22X

The following table describes the entity screen and subordinate screens associated with
PROCESS entity definitions.

Screen name Screen title Description

COPY Process Copy Copies all or specified options of a
process definition into the definition of
the named process

PROC Process Entity Identifies an CA-ADS process occurrence

PROX Process Extension Renames the requested process

PRSY Within Systems Associates systems with the named
process

RKEY Relational Keys Associates processes with the named
process through predefined relational keys
for modules established as processes

SRCE Process Source Associates source text lines with the
named process

XREF Module Requests display of modules, users,

Cross Reference and/or programs that reference the named

process in their definitions

6.6.10 PROGRAM entity screens

The following figure shows the entity screen and subordinate screens associated with

PROGRAM entity

definitions. The arrows show the path through these screens.

Chapter 6. IDD Menu Facility 6-29

6.6 Descriptions of IDD menu facility screens

TOP — PROG —

REGN
CLAT
COMM
PRGX
HIST
RKEY
PUBL
COML
COPY

23 EEEX2Z

XREF — SHOW

233X EEX2Z

PSYS
PDCO
PELM
PEPT
PFIL
PMAP
PSUB
PMOD
PRCY
PRUS
PSYS
PPRG

PSAR
PSST
PSRC
PSLR

o

The following table describes the entity screen and subordinate screens associated with
PROGRAM entity definitions.

Screen name Screen title Description

COoPY Program Copy Copies dl or specified options of a
program definition into the definition of
the named program

HIST History Shows a chronological account of a
program's existence

PDCO Program DC Options Assigns CA-IDMS/DC options to the
named program

PELM Program Elements Describes elements used by the named
program

PEPT Program Entry Points Associates entry points with the named
program

PFIL Program Files Associates files with the named program

PMAP Program Maps Used Describes maps used by the named
program

PMOD Program Modules Describes modules used by the named

Used program

PPRG Programs Called Describes programs called by the named
program

PRCY Program Records Describes records copied by the named

Copied program
PRGX Program Extension Defines the estimated number of lines;

for an CA-ADS/Batch transaction, defines
the starting sequence number in the
named program; renames the requested
program; accesses screens that relate
programs to occurrences of subschemas
and other entity types or that further
define programs

6-30 CA-IDMS IDD DDDL Reference

6.6 Descriptions of IDD menu facility screens

Screen name Screen title Description
PROG Program Entity Identifies a program occurrence
PRUS Program Records Describes records used by the named
Used program
PSAR Program Subschema Describes subschema areas accessed by
Areas the named program
PSLR Program Logica Describes subschema logical records used
Records by the named program
PSRC Program Subschema Describes subschema records used by the
Records named program
PSST Program Subschema Describes subschema sets used by the
Sets named program
PSUB Program Subschema Describes the subschema used by the
named program; accesses the Program
Subschema Areas screen, the Program
Subschema Records screen, the Program
Subschema Sets screen, and the Program
Logical Records screen
PSYS Within Systems Associates systems with the named
program
RKEY Relational Keys Associates programs with the named
program through predefined relational
keys
XREF Program Requests display of programs and tasks

Cross Reference

that reference the named program in their
definitions

6.6.11 QFILE entity screens

The following figure shows the entity screen and subordinate screens associated with
QFILE entity definitions. The arrows show the path through these screens.

TOP — QFIL —

SRCE
QSYS
REGN
CLAT
COMM
HIST
XREF — SHOW
QFIX
PUBL
RKEY
COML

233 EEE212%

CopPY

Chapter 6. IDD Menu Facility 6-31

6.6 Descriptions of IDD menu facility screens

The following table describes the entity screen and subordinate screens associated with

QFILE entity defin

itions.

Screen name Screen title Description

COPY Qfile Copy Copies all or specified options of a gfile
definition into the definition of the named
dfile

QFIL Qfile Entity Identifies a CA-OLQ dfile occurrence

QFIX Qfile Extension Renames the requested dfile

QSsYS Within Systems Associates systems with the named dfile

RKEY Relational Keys Associates dfiles with the named dfile
through predefined relational keys for
modules established as dfiles

SRCE Qfile Source Associates source text lines with the
named dfile

XREF Module Requests display of modules, users,

Cross Reference

and/or programs that reference the named
dfile in their definitions

6.6.12 RECORD entity screens

The following figure shows the entity screen and subordinate screens associated with
RECORD entity definitions. The arrows show the path through these screens.

Note: The Record Element List (RELL) screen can be invoked from the Record
Entity (RECD) screen and the Record Element (RELM) screen.

TOP —> RECD —

RELM

REGN
CLAT
COMM
HIST

COBL
PUBL

CcomML

vYRPEIIIIL

COPY

RELL — RELM

XREF — SHOW

RECX RSYN
RKEY RFIL

The following table describes the entity screen and subordinate screens associated with
RECORD entity definitions.

6-32 CA-IDMS IDD DDDL Reference

6.6 Descriptions of IDD menu facility screens

Screen hame

Screen title

Description

COBL

COBOL Elements

Displays the COBOL format of the
record elements associated with the
named record

COPY

Record Copy

Copies all or specified options of a record
definition into the definition of the named
record

RECD

Record Entity

Identifies a record occurrence

RECX

Record Extension

Defines storage medium and estimated
number of occurrences for the named
record; renames the requested record;
accesses the Record Synonym screen and
the Within File screen

RELL

Record Element List

Lists record elements associated with the
named record; selects record element
occurrences for further display by means
of the Record Element screen

RELM

Record Element

Displays or associates record elements
with the named record

RFIL

Within File

Associates files with the named record

RKEY

Relational Keys

Associates records with the named record
through predefined relational keys

RSYN

Record Synonym

Identifies record synonyms (alternative
names for a record)

XREF

Record
Cross Reference

Requests display of records, programs,
maps, schemas, and/or subschemas that
reference the named record in their
definition

6.6.13 SYSTEM entity screens

The following figure shows the entity screen and subordinate screens associated with
SYSTEM entity definitions. The arrows show the path through these screens.

TOP — SYST —

SSYS
REGN
CLAT
COMM
HIST
XREF — SHOW
PUBL
RKEY
CoML

23X EEX2Z

CopPY

Chapter 6. IDD Menu Facility 6-33

6.6 Descriptions of IDD menu facility screens

The following table describes the entity screen and subordinate screens associated with
SYSTEM entity definitions.

Screen name Screen title Description

COPY System Copy Copies al or specified options of a
system definition into the definition of
the named system

RKEY Relational Keys Associates systems with the named
system through predefined relational keys
SSYS Within Systems Associates systems with the named
system
SYST System Entity Identifies a system occurrence
XREF System Requests display of entities that reference
Cross Reference the named system in their definitions

6.6.14 TABLE entity screens

The following figure shows the entity screen and subordinate screens associated with
TABLE entity definitions. The arrows show the path through these screens.

TOP — TABL — EVAL
TABX
REGN
CLAT
COMM
HIST
XREF — SHOW
CVAL
TSYS
PUBL
RKEY
comML
CoPY

YRR REIIIL

The following table describes the entity screen and subordinate screens associated with
TABLE entity definitions.

6-34 CA-IDMS IDD DDDL Reference

6.6 Descriptions of IDD menu facility screens

Screen name Screen title Description

COPY Table Copy Copies all or specified options of a table
definition into the definition of the named
table

CVAL Code Table Values Associates encode and decode values
with the named code table

EVAL Table Edit Values Associates values and value ranges with
the named edit table

TABL Table Entity Identifies a table occurrence

TABX Table Extension Renames the requested table

TSYS Within Systems Associates systems with the named table

RKEY Relational Keys Associates tables with the named table
through predefined relational keys for
modules established as tables

XREF Module Requests display of modules, users,

Cross Reference

and/or programs that reference the named
table in their definition

6.6.15 USER entity screens

The following figure shows the entity screen and subordinate screens associated with
USER entity definitions. The arrows show the path through these screens.

TOP — USER —

2RI X

USRX
UDEF
UUSR
UQFI
UsYs
UFIL
CLAT
COMM
HIST
XREF —> SHOW
AUTH
UoLQ
USON
USuB
uDCs
RKEY
COML
COPY

The following table describes the entity screen and subordinate screens associated with
USER entity definitions.

Chapter 6. IDD Menu Facility 6-35

6.6 Descriptions of IDD menu facility screens

Screen name Screen title Description

AUTH User Authority Assigns product and entity-type authority
to the named user

COPY User Copy Copies all or specified options of a user
definition into the definition of the named
user

RKEY Relational Keys Associates users with the named user
through predefined relational keys

uUDCS Access to DC/UCF Defines the user's access to particular

Systems systems
UDEF OLQ(Cl}LPRIT Assigns CA-OLQ and CA-CULPRIT
Definition access options to the named user

UFIL Access to Files Defines the user's access to particular
CULPRIT files

UoLQ OLQ Default Options Assigns default processing options for
CA-OLQ to the named user

UQFI Access to Qfiles Defines the user's access to particular
dfiles

USER User Entity Identifies a user occurrence

USON Signon Profiles Associates signon profiles with the named
user (modules that can be executed when
the user signs on to a system or an
application)

USRX User Extension Assigns access to ASF, IDB, and/or IDD
to the named user; indicates a default
public access specification for entities
added by the named user under ASF;
renames the requested user

uUsuB Access to Defines the user's access to particular

Subschemas subschemas

Usys Of Systems Associates systems with the named user

UUSR Within Users Associates users with the named user

XREF User Cross Reference Requests display of entities that reference

the named user in their definitions

The following figure shows the entity screen and subordinate screens associated with
USER-DEFINED entity definitions. The arrows show the path through the screens.

6-36 CA-IDMS IDD DDDL Reference

6.6 Descriptions of IDD menu facility screens

TOP — ENTL — ENTY REGN
CLAT
COMM
HIST
PUBL
RKEY
COML

The following table describes the entity screen and subordinate screens associated with
USER-DEFINED entity definitions.

Screen name Screen title Description
ENTL User-Defined Entity Lists all user-defined entity types in the
List dictionary; allows selection of a

user-defined entity occurrence for further
display

ENTY User Defined Entity Identifies a user-defined entity
occurrence; renames a user-defined entity
occurrence

Chapter 6. IDD Menu Facility 6-37

6.7 Sample session

6.7 Sample session

A sample session that illustrates the use of the menu facility is presented below.
During this session, you request the menu facility to display alist of ELEMENT entity
occurrences, then chooses one entity occurrence for display.

Each step of the session is described and illustrated by the current screen. Default

values for response fields (indicated by underscores) are listed when applicable.

Beginning a menu facility session: To begin an IDD menu facility session:
1. Sign on to the system.

2. When signon is accepted, type the task code IDDM to invoke the IDD menu
facility and display the Master Selection screen.

3. Press ENTER to sign on to the IDD menu facility, using the system signon
information. The menu facility returns a message that indicates a successful

signon.
COMPUTER ASSOCIATES INTERNATIONAL, INC.
IDD REL 15.0 %% MASTER SELECTION %% TOP
>
SIGNON TO IDD WAS SUCCESSFUL
DICTIONARY NAME...: NODE NAME..:
USER NAME.........:
PASSWORD. .. v..uw..
USAGE MODE........:X UPDATE _ RETRIEVAL
PFKEY SIMULATION..:X OFF _ ON
_ ATTR = ATTRIBUTE <PF2> _PROC = PROCESS <PF3>
~ CLAS = CLASS <PF4> ~ PROG = PROGRAM <PF5>
" ELEM = ELEMENT <PF6> ~ RECD = RECORD <PF7>
" FILE = FILE <PFg> ~ TABL = TABLE <PF9>
~ MODU = MODULE <PF10> ~ USER = USER <PF11>
T ENTL = USER DEFINED ENTITY LIST _ SYST = SYSTEM
~ MSGS = MESSAGE
T QFIL = QFILE _ OPTI = OPTIONS
" DISP = DISPLAY ALL " HELP = HELP <PF1>

Displaying a list of entity occurrences: To display alist of entity occurrences,
you type a character next to DISPLAY ALL in the screen selection area and press
ENTER:

6-38 CA-IDMS IDD DDDL Reference

6.7 Sample session

ATTR
CLAS
ELEM

bl
—
—
m

MODU
ENTL
MSGS
QFIL

>

o
—
w
©

IDD REL 15.0

COMPUTER ASSOCIATES INTERNATIONAL, INC.
%% MASTER SELECTION #x TOP
SIGNON TO IDD WAS SUCCESSFUL
DICTIONARY NAME...: NODE NAME..:
USER NAME.........:
PASSWORD..........:
USAGE MODE........:X UPDATE _ RETRIEVAL
PFKEY SIMULATION..:X OFF _ ON
ATTRIBUTE <PF2> _ PROC = PROCESS <PF3>
CLASS <PF4> _ PROG = PROGRAM <PF5>
ELEMENT <PF6> _ RECD = RECORD <PF7>
FILE <PF8> _ TABL = TABLE <PF9>
MODULE <PF10> _ USER = USER <PF11>
USER DEFINED ENTITY LIST _ SYST = SYSTEM
MESSAGE
QFILE _ OPTI = OPTIONS
DISPLAY ALL HELP = HELP <PF1>

The menu facility displays the Display All screen.

Specifying selection criteria: The WHERE response area specifies criteria to be
used by the menu facility in selecting the occurrences to be displayed. To display the
first 20 ELEMENT entity occurrences that contain the string W-EMP in the element

name, you:

1. Request a comparison, using the syntax option NAME

2. Override the default comparison action EQ by typing a character at the underscore
that immediately precedes the CONTAINS field

3. Request that the ELEMENT NAME be searched for the string W-EMP by typing
the string in the 'VALUE/FIELD field

»» For more information about the WHERE clause, see 3.7.3, “WHERE clause
(conditional expressions)” on page 3-46.

Chapter 6. IDD Menu Facility 6-39

6.7 Sample session

IDD REL 15.0 *%% DISPLAY ALL = DISP

DISPLAY PROCESSING ORDER..:X FIRST _ NEXT _ LAST _ PRIOR _ ALL

NUMBER OF OCCURRENCES.....:20
OF ENTITY TYPE............:_ ATTRIBUTES _ PROCESSES _ TABLES
_ CLASSES _ PROGRAMS _ USERS
X ELEMENTS _ QFILES _ MESSAGES
_ FILES _ RECORDS
MODULES SYSTEMS

_ MODULES ONLY (WITHOUT PROCESSES, QFILES, TABLES)
_ USER DEFINED ENTITY...:

WHERE 'VALUE'/FIELD....:name

COMPARISON ACTION..:X EQ _ NE _GT _GE _ LT _ LE
X CONTAINS _ MATCHES

'"VALUE'/FIELD....:'w-emp'
OR 'VALUE'/FIELD....:
OR 'VALUE'/FIELD....:

The menu facility displays the pageable Display All List screen.

Display All List screen: The SELECTED ON field and underlying headers display
the selection criteria; that is, element names that contain W-EMP. The entity
occurrences that fulfill the requirements are listed in columnar format by name and
version number.

You can scan the list of element entity occurrences on the Display All List screen and
choose to view additional information about element W-EMP-ADDRESS by typing a
character next to the list item and pressing ENTER.

IDD REL 15.0 xx% DISPLAY ALL LIST *%x DISL
- PAGE 1 OF 2

SELECTED ON: NAME CONTAINS 'W-EMP'
ELEMENT NAME VER

W-EMPOSITION-VERB
W-EMPLOYEE-VERB
W-EMP-BIRTH-DAY
W-EMP-TERM-DAY
W-EMP-START-DAY
W-EMP-SS-NUMBER
W-EMP-STATUS
W-EMP-HOME-PHONE
W-EMP-ZIP-LAST-4
W-EMP-STATE
W-EMP-CITY
W-EMP-STREET

X W-EMP-ADDRESS
W-EMP-ZIP-FIRST-5
W-EMP-ZIP
W-EMP-SEX

= b b b b b b b b b b b b b e

6-40 CA-IDMS IDD DDDL Reference

6.7 Sample session

The IDD menu facility displays the element occurrence W-EMP-ADDRESS on the
Element Entity screen.

Element Entity screen: The message line contains an informative message
confirming your request. The specification area identifies the entity occurrence by
NAME, VERSION NUMBER, and USAGE.

IDD REL 15.0 sokx ELEMENT ENTITY #wx ELEM
—>
ELEMENT 'W-EMP-ADDRESS' VERSION 1 DISPLAYED
X DISPLAY ELEMENT NAME....:W-EMP-ADDRESS
_ MODIFY
~ ADD VERSION NUMBER..:1 _ HIGHEST _ NEXT HIGHEST
~ DELETE " LOWEST ~ _ NEXT LOWEST
DESCRIPTION:
PICTURE....:
USAGE......:X DISPLAY _ CONDITION NAME (LEVEL 88)
_ COMP/COMP-4 (BINARY) ~ COMP-3 (PACKED DECIMAL)
~ COMP-1 (SHORT FLOATING) _ COMP-2 (LONG FLOATING)
~BIT ~ POINTER
_ ELMX = ELEMENT EXTENSION <PF9> _ SUBE = SUBORD ELEMENTS <PF11>
" REGN = USER REGISTRATION <PF2> T PUBL = PUBLIC ACCESS <PF3>
T CLAT = CLASS/ATTRIBUTES <PF4> T RKEY = RELATIONAL KEYS <PF5>
T COMM = COMMENTS <PF6> T COML = COMMENT KEY LIST <PF7>
" HIST = HISTORY <PF8> T COPY = SAME AS/COPY FROM
" XREF = CROSS REFERENCE <PF10> T HELP = HELP <PF1>

Selecting fields to view additional information: In order to view other
information about W-EMP-ADDRESS, refer to the screen selection area at the bottom
of the Element Entity screen. The screen selection area lists other screens that contain
information about the ELEMENT entity occurrence.

To view information about subordinate elements, you type a character at the
underscore immediately preceding the SUBE field and press ENTER.

Chapter 6. IDD Menu Facility 6-41

6.7 Sample session

IDD REL 15.0 sk ELEMENT ENTITY e ELEM
>
ELEMENT 'W-EMP-ADDRESS' VERSION 1 DISPLAYED
X DISPLAY ELEMENT NAME....:W-EMP-ADDRESS
_ MODIFY
~ ADD VERSION NUMBER..:1 _ HIGHEST _ NEXT HIGHEST
~ DELETE ~ LOWEST ~ NEXT LOWEST
DESCRIPTION:
PICTURE....:
USAGE......:X DISPLAY _ CONDITION NAME (LEVEL 88)
_ COMP/COMP-4 (BINARY) ~ COMP-3 (PACKED DECIMAL)
~ COMP-1 (SHORT FLOATING) _ COMP-2 (LONG FLOATING)
~ BIT ~ POINTER
_ ELMX = ELEMENT EXTENSION <PF9> X SUBE = SUBORD ELEMENTS <PF11>
T REGN = USER REGISTRATION <PF2> _ PUBL = PUBLIC ACCESS <PF3>
" CLAT = CLASS/ATTRIBUTES <PF4> " RKEY = RELATIONAL KEYS <PF5>
T COMM = COMMENTS <PF6> T COML = COMMENT KEY LIST <PF7>
T HIST = HISTORY <PFg> T COPY = SAME AS/COPY FROM
~ XREF = CROSS REFERENCE <PF10> T HELP = HELP <PF1>

The IDD menu facility displays the Subordinate Elements screen, which contains a list
of elements that are subordinate to group element W-EMP-ADDRESS.

Subordinate Elements screen: A message displayed on the message line
identifies the group element entity occurrence.

IDD REL 15.0 *%% SUBORDINATE ELEMENTS =+ SUBE
- PAGE 1 LINE 1 1/4
ELEMENT 'W-EMP-ADDRESS' VERSION 1

ELEMENT NAME....:W-EMP-STREET
VERSION NUMBER..:1 _ HIGHEST _ LOWEST

OCCURS..: TIMES _ REDEFINES PREVIOUS SUBORDINATE ELEMENT
ELEMENT NAME....:W-EMP-CITY
VERSION NUMBER..:1 _ HIGHEST _ LOWEST

0CCURS TIMES _ REDEFINES PREVIOUS SUBORDINATE ELEMENT
ELEMENT NAME....:W-EMP-STATE
VERSION NUMBER..:1 _ HIGHEST _ LOWEST

OCCURS. .: TIMES _ REDEFINES PREVIOUS SUBORDINATE ELEMENT
ELEMENT NAME....:W-EMP-ZIP
VERSION NUMBER..:1 _ HIGHEST _ LOWEST

0CCURS TIMES _ REDEFINES PREVIOUS SUBORDINATE ELEMENT
ELEMENT NAME....:
VERSION NUMBER..: _ HIGHEST _ LOWEST

OCCURS..: TIMES _ REDEFINES PREVIOUS SUBORDINATE ELEMENT

After choosing to review cross-reference information about element
W-EMP-ADDRESS you request the Element Cross Reference screen by typing the
screen name XREF in the command area of the Subordinate Elements screen and
pressing ENTER.

6-42 CA-IDMS IDD DDDL Reference

6.7 Sample session

IDD REL 15.0 *xx% SUBORDINATE ELEMENTS =xx SUBE
—XREF PAGE 1 LINE 1 1/4
ELEMENT 'W-EMP-ADDRESS' VERSION 1

ELEMENT NAME....:W-EMP-STREET

VERSION NUMBER..:1 _ HIGHEST _ LOWEST

OCCURS..: TIMES _ REDEFINES PREVIOUS SUBORDINATE ELEMENT
ELEMENT NAME....:W-EMP-CITY
VERSION NUMBER..:1 _ HIGHEST _ LOWEST

OCCURS. .: TIMES _ REDEFINES PREVIOUS SUBORDINATE ELEMENT
ELEMENT NAME....:W-EMP-STATE
VERSION NUMBER..:1 _ HIGHEST _ LOWEST

OCCURS..: TIMES _ REDEFINES PREVIOUS SUBORDINATE ELEMENT
ELEMENT NAME....:W-EMP-ZIP
VERSION NUMBER..:1 _ HIGHEST _ LOWEST

OCCURS..: TIMES _ REDEFINES PREVIOUS SUBORDINATE ELEMENT
ELEMENT NAME....:
VERSION NUMBER..: _ HIGHEST _ LOWEST

OCCURS. .: TIMES _ REDEFINES PREVIOUS SUBORDINATE ELEMENT

The menu facility displays the Element Cross Reference selection screen.

Element Cross Reference screen: To review all related information, you type a
character in the CROSS REFERENCE TO ALL CATEGORIES LISTED BELOW
field and press ENTER.

IDD REL 15.0 xxx 'ELEMENT' CROSS REFERENCE =% XREF

ELEMENT 'W-EMP-ADDRESS' VERSION 1

X CROSS REFERENCE TO ALL CATEGORIES LISTED BELOW
_ SAME AS OTHER ELEMENTS
_ RELATED TO OTHER ELEMENTS

_ WITHIN RECORDS _ WITHIN REPORTS _ WITHIN TRANSACTIONS

NOTE - SELECT ONE OR MORE OF THE ABOVE CATEGORIES TO DISPLAY THE
CROSS REFERENCE INFORMATION ASSOCIATED WITH THIS ELEMENT.

The entity occurrence is highlighted on the message line of the Element Cross
Reference screen. Related cross-reference information is displayed in the specification
area. W-EMP-ADDRESS is an element in the record IMH-WORD-REC-01, version
number 1.

Chapter 6. IDD Menu Facility 6-43

6.7 Sample session

IDD REL 15.0 *%% 'ELEMENT' CROSS REFERENCE === SHOW
—-> PAGE 1 OF 1
ELEMENT 'W-EMP-ADDRESS' VERSION 1

WITHIN RECORD JMH-WORK-REC-01 VERSION 1
WITHIN GROUP W-EMPLOYEE VERSION IS 1

Ending the menu facility session: To end the IDD menu facility session and
return control to the system, you type the signoff command BYE in the command area
of the current screen and press ENTER.

IDD REL 15.0 *%% 'ELEMENT' CROSS REFERENCE == SHOW
—BYE PAGE 1 OF 1
ELEMENT 'W-EMP-ADDRESS' VERSION 1

WITHIN RECORD JMH-WORK-REC-01 VERSION 1
WITHIN GROUP W-EMPLOYEE VERSION IS 1

6-44 CA-IDMS IDD DDDL Reference

Appendix A. DDDL Compiler Batch Execution JCL

A.1 IDMSDDDL under OS/390 A-4
A.2 IDMSDDDL under VSE/ESA A-6
A.3 IDMSDDDL under VM/ESA A-13
A.4 IDMSDDDL under BS2000/0SD A-15

Appendix A. DDDL Compiler Batch Execution JCL A-1

A-2 CA-IDMS IDD DDDL Reference

This appendix shows the JCL/commands you use to execute the batch DDDL compiler
(IDMSDDDL) under OS/390, VSE/ESA, VM/ESA, and BS2000/0OSD.

Appendix A. DDDL Compiler Batch Execution JCL A-3

A.1 IDMSDDDL under OS/390

A.1 IDMSDDDL under OS/390

Executing under the central version: 0OS390 JCL for running IDMSDDDL
under the CA-IDMS/DB central version follows. IDMSDDDL (0S/390)

//stepname EXEC PGM=IDMSDDDL,REGION=1024K
//STEPLIB DD DSN=idms.dba.loadlib,DISP=SHR
// DSN=idms.loadlib,DISP=SHR
//sysctl DD DSN=idms.sysctl,DISP=SHR
//dcmsg DD DSN=sysmsg.ddldcmsg,DISP=SHR
//SYSLST DD SYSOUT=A

//SYSIDMS DD =*

DMCL=dmc1-name

DICTNAME=dictionary-name

Other optional SYSIDMS parameters

/*

//SYSIPT DD =*

DDDL source statements

/*

»»> For complete information on optional SYSIDMS parameters, refer to the CA-IDMS
Database Administration document.

idms.dba.loadlib Dataset name of the load library containing the DMCL
and database name table load modules

idms.loadlib Dataset name of the load library containing the
CA-IDMS executable modules

sysctl DDname for the SYSCTL file; sysctl is SYSCTL unless
specified otherwise in IDMSOPTI

idms.sysctl Dataset name of the SYSCTL file

demsg DDname name of the system message (DDLDCMSG)
area

sysmsg.ddldcmsg Dataset name of the system message (DDLDCMSG)
area

dmc1-name Name of the DMCL to be accessed

dictionary-name Name of the dictionary to be accessed

SYSPCH statement: If you are going to be using any PUNCH statements, include
the SYSPCH statement in JCL. For example:

//SYSPCH DD DSN=dataset-name,DISP=(NEW,KEEP,DELETE),
DCB=(RECFM=FB,BLKSIZE=9040,LRECL=80),
SPACE=space-specification,
UNIT=unit,VOL=SER=nnnnnn

Executing in local mode: To execute the DDDL compiler in local mode, remove
the SYSCTL DD statement and replace it with the following statements:

A-4 CA-IDMS IDD DDDL Reference

A.1 IDMSDDDL under OS/390

//dictdb DD DSN=idms.appldict.ddldml,DISP=SHR
//dloddb DD DSN=idms.appldict.ddldclod,DISP=SHR

//sysjrnl DD DSN=idms.tapejrnl,DISP=SHR

Note: These statements are needed only if the DDDL compiler run accesses the
LOAD MODULE entity type.

dictdb DDname of the application dictionary definition
(DDLDML) area

idms.appldict.ddldml Dataset name of the application dictionary definition
(DDLDML) area

dloddb DDname of the application dictionary load
(DDLDCLOD) area

idms.appldict.ddldclod Dataset name of the application dictionary load
(DDLDCLOD) area

sysjrnl DDname of tape journal file; the name must be
appropriate to the DMCL module being used
idms.tapejrnl Dataset name of tape journal file

Appendix A. DDDL Compiler Batch Execution JCL A-5

A.2 IDMSDDDL under VSE/ESA

A.2

IDMSDDDL under VSE/ESA

Executing under the central version: The VSE/ESA JCL used to run
IDMSDDDL under the central version follows. IDMSDDDL (VSE/ESA)

// EXEC PROC=IDMSLBLS
// UPSI b If specified in IDMSOPTI module
// DLBL IJSYSPH, 'temp.ddd1"',0
// EXTENT SYSPCH,nnnnnn,,,ssss,1111
ASSGN SYSPCH,X'ddd'
// EXEC I1DMSDDDL
Optional SYSIDMS parameters

/*

DDDL source statements

/*

IDMSLBLS Name of the procedure provided at installation that
contains the file definitions for CA-IDMS dicitonaries
and databases.

»> For a complete listing of IDMSLBLS, see
"IDMSLBLS procedure”, later in this section.
IDMSLBLS references the SY SIDMS input file, afile
you can use to specify runtime parameters, such as
DMCL or dictionary name.

»» For information on SY SIDMS parameters, refer to
CA-IDMS Database Administration.

b Appropriate 1- to 8-character UPSI bit string, as
specified in the IDMSOPTI module

nnnnnn Serial number of the disk volume

temp.ddd] File ID of the output file

SSSS Starting track (CKD) or block (FBA) of disk extent

nn Number of tracks (CKD) or blocks (FBA) of disk
extent

ddd Disk device assignment for punched output

Executing in local mode: To execute IDMSDDDL in loca mode, remove the
UPSI specification and replace it with the following statements:

// EXTENT sys017,nnnnnn

// ASSGN sys017,DISK,VOL=nnnnnn,SHR

// TLBL sysjrnl, 'idms.tapejrnl',,nnnnnn,,f
// ASSGN sys009,TAPE,VOL=nnnnnn

A-6 CA-IDMS IDD DDDL Reference

A.2 IDMSDDDL under VSE/ESA

sys017 Logica unit assignment for dictionary load area

sys009 Filename of the tape journa file; the name must be
appropriate to the DMCL module being used

idms.tapejrnl File ID of the tape journa file

f File number of the tape journal file

nnnnnn Serial number of the tape volume

IDMSLBLS procedure: IDMSLBLS is a procedure that contains file definitions for
the dictionaries, sample databases, disk journa files, and SYSIDMS file provided
during installation.

You can tailor the following IDMSLBLS procedure (provided at installation) to reflect
the filenames and definitions in use at your site. Reference IDMSLBLS as shown in
the previous VSE/ESA JCL job stream.

Appendix A. DDDL Compiler Batch Execution JCL A-7

A.2 IDMSDDDL under VSE/ESA

// LIBDEF

// LIBDEF

LIBDEFS ———
*,SEARCH=idms1ib.sublib
*,CATALOG=user.sublib

// DLBL
// EXTENT
// DLBL
// EXTENT
// ASSGN
// DLBL
// EXTENT
// ASSGN
// DLBL
// EXTENT
// ASSGN
// DLBL
// EXTENT
// ASSGN
// DLBL
// EXTENT
// ASSGN
// DLBL
// EXTENT
// ASSGN
// DLBL
// EXTENT
// ASSGN
// DLBL
// EXTENT
// ASSGN
// DLBL
// EXTENT
// ASSGN
// DLBL
// EXTENT
// ASSGN
// DLBL
// EXTENT
// ASSGN
// DLBL
// EXTENT
// ASSGN
// DLBL
// EXTENT
// ASSGN
// DLBL
// EXTENT
// ASSGN
// DLBL
// EXTENT
// ASSGN
// DLBL
// EXTENT
// ASSGN
// DLBL

LABELS

idms1ib,'idms.library',1999/365
,nnnnnn, , ,5sss, 1500

dccat, 'idms.system.dccat',1999/365,DA
SYSnnn,nnnnnn, , ,s5s5,31
SYSnnn,DISK,VOL=nnnnnn, SHR

dccatl, 'idms.system.dccatlod',1999/365,DA
SYSnnn,nnnnnn, , ,555S,6
SYSnnn,DISK,VOL=nnnnnn, SHR

dccatx, 'idms.system.dccatx',1999/365,DA
SYSnnn,nnnnnn,,,ssss,11
SYSnnn,DISK,VOL=nnnnnn, SHR

dcdml, 'idms.system.dd1dml',1999/365,DA
SYSnnn,nnnnnn, ,,ssss,101
SYSnnn,DISK,VOL=nnnnnn, SHR

dclod, 'idms.system.dd1dclod"',1999/365,DA
SYSnnn,nnnnnn, ,,s5s5,21
SYSnnn,DISK,VOL=nnnnnn, SHR

dclog, 'idms.system.dd1dclog',1999/365,DA
SYSnnn,nnnnnn, ,,5sss,401
SYSnnn,DISK,VOL=nnnnnn, SHR

dcrun, 'idms.system.dd1dcrun',1999/365,DA
SYSnnn,nnnnnn,,,ssss,68
SYSnnn,DISK,VOL=nnnnnn, SHR

dcscr, 'idms.system.ddldcscr',1999/365,DA
SYSnnn,nnnnnn, ,,ssss,135
SYSnnn,DISK,VOL=nnnnnn, SHR

dcmsg, 'idms.sysmsg.dd1dcmsg',1999/365,DA
SYSnnn,nnnnnn, , ,5555,201
SYSnnn,DISK,VOL=nnnnnn, SHR

dclscr, 'idms.sysloc.ddlocscr',1999/365,DA
SYSnnn,nnnnnn, , ,5s5S,6
SYSnnn,DISK,VOL=nnnnnn, SHR

dirldb, 'idms.sysdirl.dd1dml',1999/365,DA
SYSnnn,nnnnnn,,,ssss,201
SYSnnn,DISK,VOL=nnnnnn,SHR

dirllod, 'idms.sysdirl.dd1dclod"',1999/365,DA
SYSnnn,nnnnnn, , ,ssss,2
SYSnnn,DISK,VOL=nnnnnn, SHR

empdemo, ' idms.empdemol',1999/365,DA
SYSnnn,nnnnnn, ,,ssss,11
SYSnnn,DISK,VOL=nnnnnn, SHR

insdemo, 'idms.insdemol"',1999/365,DA
SYSnnn,nnnnnn, , ,5s5S,6
SYSnnn,DISK,VOL=nnnnnn, SHR

orgdemo, 'idms.orgdemol',1999/365,DA
SYSnnn,nnnnnn, ,,Ssss,6
SYSnnn,DISK,VOL=nnnnnn,SHR

empldem, 'idms.sqldemo.empldemo',1999/365,DA
SYSnnn,nnnnnn, ,,ssss, 11
SYSnnn,DISK,VOL=nnnnnn, SHR

infodem, 'idms.sqldemo.infodemo',1999/365,DA

00061000
00062000

A-8 CA-IDMS IDD DDDL Reference

A.2 IDMSDDDL under VSE/ESA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL projdem, 'idms.projseg.projdemo',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL indxdem, 'idms.sqldemo.indxdemo',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,Ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL sysctl,'idms.sysct1',1999/365,SD

// EXTENT SYSnnn,nnnnnn,,,SSSS,2

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL secdd, 'idms.sysuser.dd1sec',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,26

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dictdb, 'idms.appldict.dd1dml',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,51

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dloddb, 'idms.appldict.ddldclod',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,51

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL sqldd, 'idms.syssql.ddIcat',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,101

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL sqllod, 'idms.syssql.dd1cat1',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,51

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL sqlxdd, 'idms.syssql.dd1catx',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,Ssss,26

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL asfdml, 'idms.asfdict.ddldml',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,201

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL asflod, 'idms.asfdict.asflod',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,401

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL asfdata, 'idms.asfdict.asfdata',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,201

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL ASFDEFN, 'idms.asfdict.asfdefn',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,101

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL jljrnl,'idms.jljrn1',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,54

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL j2jrnl, 'idms.j2jrn1',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,Ssss,54

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL j3jrnl, 'idms.j3jrn1',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,54

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL SYSIDMS, '#SYSIPT',0,SD

+

o

idms1ib.sublib Name of the sublibrary within the library containing
CA-IDMS modules

user.sublib Name of the sublibrary within the library containing
user modules

idms1ib

Name of the file containing CA-IDMS modules

Appendix A. DDDL Compiler Batch Execution JCL A-9

A.2 IDMSDDDL under VSE/ESA

idms.library

ID associated with the file containing CA-IDMS
modules

Logical unit of the volume for which the extent is
effective

Volume seria identifier of appropriate disk volume

Starting track (CKD) or block (FBA) of disk extent

Filename of the system dictionary catalog (DDLCAT)
area

idms.system.dccat ID of the system dictionary catalog (DDLCAT) area

dccatl Filename of the system dictionary catalog |load
(DDLCATLOD) area

idms.system.dccatlod ID of the system dictionary catalog load
(DDLCATLOD) area

dccatx Name of the system dictionary catalog index
(DDLCATX) area

idms.system.dccatx ID of the system dictionary catalog index (DDLCATX)
area

dedml Name of the system dictionary definition (DDLDML)
area

idms.system.dd1dm] ID of the system dictionary definition (DDLDML) area

dclod Name of the system dictionary definition load
(DDLDCLOD) area

idms.system.ddldclod ID of the system dictionary definition load
(DDLDCLOD) area

dclog Name of the system log area (DDLDCLOG) area

idms.system.dd1dclog ID of the system log (DDLDCLOG) area

dcrun Name of the system queue (DDLDCRUN) area

idms.system.ddldcrun ID of the system queue (DDLDCRUN) area

deser Name of the system scratch (DDLDCSCR) area

idms.system.ddldcscr ID of the system scratch (DDLDCSCR) area

demsg Name of the system message (DDLDCMSG) area

idms.sysmsg.ddldcmsg ID of the system message (DDLDCMSG) area

dclscr Name of the local mode system scratch (DDLOCSCR)
area

idms.sysloc.ddlocscr

ID of the local mode system scratch (DDLOCSCR)
area

A-10 CA-IDMS IDD DDDL Reference

A.2 IDMSDDDL under VSE/ESA

dirldb

Name of the IDMSDIRL definition (DDLDML) area

idms.sysdirl.dd1ldml

ID of the IDMSDIRL definition (DDLDML) area

dirllod

Name of the IDMSDIRL definition load (DDLDCLOD)
area

idms.sysdirl.dirllod

ID of the IDMSDIRL definition load (DDLDCLOD)
area

empdemo Name of the EMPDEMO area
idms.empdemol ID of the EMPDEMO area
insdemo Name of the INSDEMO area

idms.insdemol

ID of the INSDEMO area

orgdemo

Name of the ORGDEMO area

idms.orgdemol

ID of the ORDDEMO area

empldem

Name of the EMPLDEMO area

idms.sqldemo.empldemo

ID of the EMPLDEMO area

infodem

Name of the INFODEMO area

idms.sqldemo.infodemo

ID of the INFODEMO area

projdem

Name of the PROJIDEMO area

idms.projseg.projdemo

ID of the PROJIDEMO area

indxdem

Name of the INDXDEMO area

idms.sqldemo.indxdemo

ID of the INDXDEMO area

sysctl

Name of the SYSCTL file

idms.sysctl

ID of the SYSCTL file

secdd

Name of the system user catalog (DDLSEC) area

idms.sysuser.ddlsec

ID of the system user catalog (DDLSEC) area

dictdb

Name of the application dictionary definition area

idms.appldict.dd1dml

ID of the application dictionary definition (DDLDML)
area

dToddb

Name of the application dictionary definition load area

idms.appldict.ddldclod

ID of the application dictionary definition load
(DDLDCLOD) area

sqldd

Name of the SQL catalog (DDLCAT) area

idms.syssql.ddlcat

ID of the SQL catalog (DDLCAT) area

sqllod

Name of the SQL catalog load (DDLCATL) area

Appendix A. DDDL Compiler Batch Execution JCL A-11

A.2 IDMSDDDL under VSE/ESA

idms.syssql.ddlcat]

ID of SQL catalog load (DDLCATL) area

sqlxdd

Name of the SQL catalog index (DDLCATX) area

idms.syssql.ddIcatx

ID of the SQL catalog index (DDLCATX) area

asfdml

Name of the asf dictionary definition (DDLDML) area

idms.asfdict.dd1dml

ID of the asf dictionary definition (DDLDML) area

asflod

Name of the asf dictionary definition load (ASFLOD)
area

idms.asfdict.asflod

ID of the asf dictionary definition load (ASFLOD) area

asfdata

Name of the asf data (ASFDATA) area

idms.asfdict.asfdata

ID of the asf data area (ASFDATA) area

ASFDEFN

Name of the asf data definition (ASFDEFN) area

idms.asfdict.asfdefn

ID of the asf data definition area (ASFDEFN) area

Jljrnl Name of the first disk journal file
idms.jljrnl ID of the first disk journal file
J2jrnl Name of the second disk journal file
idms.j2jrnl ID of the second disk journal file
i3jrnl Name of the third disk journal file
idms.j3jrnl ID of the third disk journal file
SYSIDMS Name of the SYSIDMS parameter file

A-12 CA-IDMS IDD DDDL Reference

A.3 IDMSDDDL under VM/ESA

A.3 IDMSDDDL under VM/ESA

Executing under the central version: The VM/ESA commands you use to run
IDMSDDDL under the central version follow: IDMSDDDL (VM/ESA)

FILEDEF SYSIPT DISK sysipt data a (RECFM F LRECL ppp BLKSIZE nnn
FILEDEF SYSIDMS DISK sysidms parms a (RECFM F LRECL ppp BLKSIZE nnn
EXEC IDMSFD

OSRUN IDMSDDDL

sysipt data a Filename, type, and mode of the file containing DDDL
statements
sysidms parms a Filename, type, and mode of the file containing

SYSIDMS parameters (parameters you use to specify
your runtime environment)

ppp Record length of the file
nnn

Block size of the file

IDMSFD Exec which defines all FILEDEFs, TXTLIBs, and
LOADLIBs required by the system

1DMSDDDL Program to be executed from the VM/ESA LOADLIB

Executing in local mode: To specify that IDMSDDDL is executing in local mode,
do one of the following:

® Link IDMSDDDL with an IDMSOPTI program that specifies local execution
mode

m Specify *LOCAL* as the first input parameter in sysipt data a, the file referenced
in the FILEDEF SYSIPT statement.

» Modify the OSRUN statement, as follows:
OSRUN IDMSDDDL PARM='#*LOCAL*"

Note: This option is valid only if you issue the OSRUN command from a
System Product interpreter or an EXEC?2 file.

Creating the SYSIPT file: To create the SYSIPT file, enter these VM/ESA
commands:

XEDIT sysipt data a (NOPROF
INPUT

DDDL source statements

FILE

Appendix A. DDDL Compiler Batch Execution JCL A-13

A.3 IDMSDDDL under VM/ESA

Editing the SYSIDMS file: To edit the SYSIDMS file, enter these VM/ESA
commands:

XEDIT sysidms parms a (NOPROF
INPUT

SYSIDMS parameters

FILE

»» For information on SY SIDMS parameters you can specify, refer to CA-IDMS
Database Administration.

A-14 CA-IDMS IDD DDDL Reference

A.4 IDMSDDDL under BS2000/0SD

A.4

IDMSDDDL under BS2000/0SD

Executing under the central version: The BS2000/0OSD JCL used to run
IDMSDDDL under the central version follows: |DM SDDDL (BS2000/0OSD)

/ADD-FILE-LINK L-NAME=CDMSLIB,F-NAME=idms.dba.loadlib
/ADD-FILE-LINK L-NAME=CDMSLIB1,F-NAME=idms.loadlib
/ADD-FILE-LINK L-NAME=CDMSLODR,F-NAME=idms.loadlib
/ADD-FILE-LINK L-NAME=sysctl,F-NAME=idms.sysctl,SHARED-UPD=*YES
/ADD-FILE-LINK L-NAME=SYSIDMS,F-NAME=idms.sysidms
/ASSIGN-SYSOPT TO=temp.ddd] only if PUNCH is to SYSPCH
/ASSIGN-SYSDTA TO=*SYSCMD

/START-PROG *MOD (ELEM=IDMSDDDL, LIB=idms.load1ib,RUN-MODE=*ADV)
DDDL source statements

idms.dba.loadlib Filename of the load library containing the DMCL and
database name table load modules

idms.loadlib Filename of the load library containing the CA-IDMS
executable modules

sysctl Linkname of the SYSCTL file

idms.sysctl Filename of SYSCTL file

idms.sysidms Filename of the SYSIDMS parameters file

temp.ddd1 Filename of the punched load module output

If a PUNCH LOAD MODULE TO SYSPCH statement has been included in the
source, add the following statements to the end of the JCL:

/ASSIGN-SYSOPT TO=+PRIMARY

/ADD-FILE-LINK L-NAME=0BJMINPT,F-NAME=temp.ddd]

/ADD-FILE-LINK L-NAME=0BJMLIBO,F-NAME=idms.objlib.user
/START-PROG *MOD(ELEM=BS2KOBJM,LIB=idms.load1ib,RUN-MODE=+ADV)
MODULE=module

temp.dddl Filename of punched load module in IBM format
idms.objlib.user Filename of user object library

idms.loadlib Filename of the CA-IDMS/DB load library
module Name of the punched load module

Note: The program BS2KOBJM is executed to trandlate the object code generated by
the IDMSDDDL program from an IBM format to a SSEMENS format and to
place the resulting object code into the object library specified by the user.

Executing in local mode: To execute IDMSDDDL in loca mode, remove the
ADD-FILE-LINK for sysctl command, and replace it with the following commands:
/ADD-FILE-LINK L-NAME=dictdb,F-NAME=idms.appldict.dd1dml,SHARED-UPD=*YES

/ADD-FILE-LINK L-NAME=dloddb,F-NAME=idms.appldict.ddldclod,SHARED-UPD=*YES
/ADD-FILE-LINK L-NAME=sysjrnl,F-NAME=idms.tapejrn]

Appendix A. DDDL Compiler Batch Execution JCL A-15

A.4 IDMSDDDL under BS2000/0SD

Note: Include the FILE LINK=dloddb command only if the DDDL compiler is to
access the LOAD MODULE entity type.

sysjrnl

Linkname of tape journal file; the name must be
appropriate to the DMCL module being used

idms.tapejrnl

Filename of tape journa file

dictdb

Linkname of dictionary

idms.appldict.dd1ldml

Filename of the application dictionary definition area

dloddb

Linkname of dictionary load area

idms.appldict.ddldclod

Filename of the application dictionary load area

A-16 CA-IDMS IDD DDDL Reference

Appendix B. Syntax Converters for COBOL and PL/I

B.1 IDMSIDDC (COBOL converter) B-4
B.1.1 Under OS/390 B-4
B.1.2 Under VSE/ESA B-5
B.1.3 Under VM/ESA B-5
B.1.4 Under BS2000/0SD B-5

B.2 IDMSIDDP (PL/I converter) B-7
B.21 Under OS/390 B-7
B.22 Under VSE/ESA B-7
B.2.3 Under VM/ESA B-8
B.24 Under BS2000/0OSD B-8

Appendix B. Syntax Converters for COBOL and PL/I B-1

B-2 CA-IDMS IDD DDDL Reference

The IDD syntax converters capture COBOL and PL/I record and element definitions.
The output file containing these definitions can be used as input to IDMSDDDL.

The JCL used to execute the IDD syntax converters for COBOL (IDMSIDDC) and for
PL/I (IDMSIDDP) is presented in this appendix.

Appendix B. Syntax Converters for COBOL and PL/I B-3

B.1 IDMSIDDC (COBOL converter)

B.1 IDMSIDDC (COBOL converter)

IDMSIDDC reads a COBOL source program and/or one or more COBOL copy books
and converts FILE SECTION 01 and subsequent level statements (including level 88
statements) to DDDL ADD RECORD statements for processing by the DDDL
compiler. The following rules apply to executing IDMSIDDC:

Because the input stream is flushed when IDMSIDDC encounters a
WORKING-STORAGE SECTION or PROCEDURE DIVISION header, only one
COBOL source program can be processed in a single IDMSIDDC run.

Although any number of copy books can be concatenated and processed in a
single IDMSIDDC run, if the input stream comprises one or more copy books and
one COBOL program, the COBOL program must be processed last; IDMSIDDC
ignores al copy books encountered following the COBOL program.

IDMSIDDC ignores COBOL program DATA DIVISION COPY statements.
Accordingly, individual books copied must be inserted into the input stream to be
converted.

IDMSIDDC does not support the COBOL SYNC clause at the O1 level.
The IDMSIDDC input record format is an 80-character card image.

B.1.1 Under OS/390

The JCL for executing IDMSIDDC under OS/390 is shown below: IDMSIDDC
(0S/390)

//stepname EXEC PGM=IDMSIDDC,REGION=1024K
//STEPLIB DD DSN=idms.loadlib,DISP=SHR
//SYSLST ~ DD SYSOUT=A

//SYSPCH DD DSN=user.ddd1src,DISP=(NEW,CATLG),

UNIT=disk,SPACE=(trk, (10,5),RLSE)

//SYSIPT DD =
COBOL program and/or copy book(s)

/%

idms.loadlib Dataset name of the load library containing CA-IDMS
executable modules

user.dddlsrc Dataset name of IDMSIDDC output

disk Symbolic device name for disk file

trk,(10,5) Space allocation for IDMSIDDC output

B-4 CA-IDMS IDD DDDL Reference

B.1 IDMSIDDC (COBOL converter)

B.1.2 Under VSE/ESA

The JCL for executing IDMSIDDC under VSE/ESA is shown below: IDMSIDDC
(VSE/ESA)

// ASSGN SYSLST,X'ppp'

// DLBL IDMSPCH, 'user.dddlsrc',0
// EXTENT sys020,nnnnnn,,,ssss,1111
// ASSGN sys020,DISK,VOL=nnnnnn,SHR
// EXEC IDMSIDDC

COBOL program/copy book(s)

[
ppp Physical device assignment for printed output
user.dddlsrc File-id of punched output

sys020 Logica unit assignment for punched output
nnnnnn Volume serial identifier of disk volume

SSSS Starting track (CKD) or block (FBA) of disk extent
ni Number of tracks (CKD) or blocks (FBA) of disk

extent

B.1.3 Under VM/ESA

The commands for executing IDMSIDDC under VM/ESA are shown below:
IDMSIDDC (VM/ESA)

FILEDEF IDMSLIB DISK IDMSLIB LOADLIB A
FILEDEF SYSLST PRINTER

FILEDEF SYSPCH DISK dddl src a

FILEDEF SYSIPT DISK iddc input a
GLOBAL LOADLIB IDMSLIB

OSRUN IDMSIDDC

dddl src a Filename, filetype, and filemode of the IDMSIDDC
output file
iddc input a Filename, filetype, and filemode of the file that

contains COBOL program/copy books

B.1.4 Under BS2000/0SD

The JCL for executing IDMSIDDC under BS2000/0OSD is shown below: IDMSIDDC
(BS2000/0SD)

/ADD-FILE-LINK L-NAME=CDMSLIB,F-NAME=idms.dba.loadlib
/ADD-FILE-LINK L-NAME=CDMSLIB1,F-NAME=idms.loadlib
/ADD-FILE-LINK L-NAME=CDMSLODR,F-NAME=idms.loadlib
/ASSIGN-SYSOPT TO=temp.iddc

/ASSIGN-SYSDTA TO=+SYSCMD

/START-PROG *MOD (ELEM=IDMSIDDC,LIB=idms.loadlib,RUN-MODE=*ADV)
COBOL program/copy books

Appendix B. Syntax Converters for COBOL and PL/I B-5

B.1 IDMSIDDC (COBOL converter)

idms.dba.loadlib

Filename of the load library containing the DMCL and
database name table load modules

idms.loadlib

Filename of the load library containing CA-IDMS
executable modules

temp.iddc

Filename of IDMSIDDC output

B-6 CA-IDMS IDD DDDL Reference

B.2 IDMSIDDP (PL/I converter)

B.2 IDMSIDDP (PL/I converter)

IDMSIDDP reads one or more PL/I copy books and converts the data structures in the
DECLARE statements into DDDL ADD ELEMENT and ADD RECORD statements
for processing by the DDDL compiler. Any number of copy books can be
concatenated for input in a single IDMSIDDP run; the IDMSIDDP input record format
is an 80-character card image.

B.2.1 Under OS/390

The JCL for executing IDMSIDDP under OS/390 is shown below: DM SIDDP
(0S/390)

//stepname EXEC PGM=IDMSIDDP,REGION=1024K

//STEPLIB DD DSN=idms.loadlib,DISP=SHR

//SYSLST DD SYSOUT=A

//SYSPCH DD DSN=user.dddIsrc,DISP=(NEW,CATLG),
UNIT=disk,SPACE=(trk, (10,5),RLSE)

//SYSIPT DD =

PL/I copy book(s)

J*

idms.loadlib Dataset name of the load library containing CA-IDMS
executable modules

user.dddlsrc Dataset name of IDMSIDDP output

disk Symbolic device name for disk file

trk, (10,5 Space allocation for IDMSIDDP output

B.2.2 Under VSE/ESA

The JCL for executing IDMSIDDP under VSE/ESA is shown below: 1DMSIDDP
(VSE/ESA)

// ASSGN SYSLST,X'ppp'

// DLBL IDMSPCH, 'user.dddlisrc',0

// EXTENT sys020,nnnnnn,,,ssss,1111
// ASSGN sys020,DISK,VOL=nnnnnn, SHR
// EXEC IDMSIDDP

PL/I copy book(s)

/*

Appendix B. Syntax Converters for COBOL and PL/I B-7

B.2 IDMSIDDP (PL/I converter)

ppp Physical device assignment for printed output

user.dddlsrc File ID of the punched output

sys020 Logical unit assignment for the punched output

nnnnnn Volume serial identifier of disk volume

SSSS Starting track (CKD) or block (FBA) of disk extent

nn Number of tracks (CKD) or blocks (FBA) of disk
extent

B.2.3 Under VM/ESA

The commands for executing IDMSIDDP under VM/ESA are shown below:
IDMSIDDP (VM/ESA)

FILEDEF IDMSLIB DISK IDMSLIB LOADLIB A
FILEDEF SYSLST PRINTER

FILEDEF SYSPCH DISK dddl src a

FILEDEF SYSIPT DISK iddp input a
GLOBAL LOADLIB IDMSLIB

OSRUN IDMSIDDP

dddl src a Filename, filetype, and filemode of the IDMSIDDP
output file
iddp input a Filename, filetype, and filemode of the file that

contains PL/I copy books

B.2.4 Under BS2000/0SD

The JCL for executing IDMSIDDP under BS2000/0OSD is shown below: IDMSIDDP
(BS2000/0SD)

/ADD-FILE-LINK L-NAME=CDMSLIB,F-NAME=idms.dba.loadlib
/ADD-FILE-LINK L-NAME=CDMSLIB1,F-NAME=idms.loadlib
/ADD-FILE-LINK L-NAME=CDMSLODR,F-NAME=idms.loadlib
/ASSIGN-SYSOPT TO=temp.iddp

/ASSIGN-SYSDTA TO=*SYSCMD

/START-PROG *MOD (ELEM=IDMSIDDP,LIB=idms.loadlib,RUN-MODE=*ADV)
PL/I copy book(s)

idms.dba.loadlib Filename of the load library containing the DMCL and
database name table load modules

idms.loadlib Filename of the load library containing CA-IDMS
executable modules

temp.iddp Filename of the IDMSIDDP output

B-8 CA-IDMS IDD DDDL Reference

Appendix C. Data Transfer Between Dictionaries

Cl Overview e C-4
C.2 Stepsfor datatransfer C-6
C.3 Example of transferring data between dictionaries C-7
C.4 Completing the datatransfer C-8
C.5 Transferringinbatchmode C-9

Appendix C. Data Transfer Between Dictionaries C-1

C-2 CA-IDMS IDD DDDL Reference

This appendix outlines the procedures for transferring some or al of the data in one
dictionary to ancther dictionary. An overview of the procedure is presented, followed
by an example. The DDDL PUNCH and INCLUDE statements facilitate this transfer
process, as follows:

» PUNCH provides the user with the ability to collect, by means of a single
command, all occurrences of al entity types being transferred and to direct the
output to an IDD module where it is stored as DDDL syntax.

» INCLUDE allows the user to execute the DDDL syntax punched to an IDD
module during a PUNCH operation, thereby generating the syntax used to
complete the transfer.

Appendix C. Data Transfer Between Dictionaries C-3

C.1 Overview

C.1 Overview

To maintain existing entity relationships while transferring data, the user must transfer

entity definitions in the proper order. The following list specifies the order in which
entities, entity options, and nests should be added to or replaced in the target
dictionary:

Alternative pictures

Comment keys

Relational keys

Users

Classes

Attributes for classes defined with manual attributes
User-defined entities that IDD will reference
Systems

Files

Elementary elements

Subordinate elements

Group elements

Records

Modules

Programs

User-defined entities that reference IDD entities

The effect of ATTRIBUTES ARE AUTOMATIC: Attributes within classes
assigned the ATTRIBUTES ARE AUTOMATIC qudifier are transferred
automatically. Therefore, to facilitate the transfer, it is recommended that the user
change al class definitions that include the ATTRIBUTES ARE MANUAL
specification to ATTRIBUTES ARE AUTOMATIC and return the specification to
ATTRIBUTES ARE MANUAL when the transfer is complete.

Handling unresolved relationships: Even if entities are transferred to a

dictionary in the order specified above, unresolved relationships may exist if any of the
following clauses are present in USER, SYSTEM, PROGRAM, and FILE statements:

Statement Optional clause

USER OF SYSTEM/SUBSYSTEM
ACCESS TO SUBSCHEMA/SIGNON QFILE
ACCESS TO QFILE
ACCESS TO SYSTEM/SUBSYSTEM
ACCESS TO FILE
SIGNON PROFILE
WITHIN USER

SYSTEM WITHIN SYSTEM/SUBSY STEM
FILE RELATED FILE
PROGRAM PROGRAM CALLED

C-4 CA-IDMS IDD DDDL Reference

C.1 Overview

If any entities being transferred contain one or more of these clauses, modify the
definition of those entities to include the unresolved relationships once the transfer is
complete.

Appendix C. Data Transfer Between Dictionaries C-5

C.2 Steps for data transfer

C.2 Steps for data transfer

Follow these steps to transfer data from a test dictionary to a production dictionary:

1. Issue PUNCH ALL statements naming each entity type to be transferred and
specifying selection criteria, as appropriate. This step creates a file containing
PUNCH ELEMENT and PUNCH RECORD statements.

2. Execute the module source in this file by issuing an INCLUDE statement. This
step creates a module containing DDDL syntax.

Note: You must ensure that all entities, entity options, and nests upon which the
entities being transferred are dependent exist in the production dictionary.

Each step is described in greater detail in the following example.

C-6 CA-IDMS IDD DDDL Reference

C.3 Example of transferring data between dictionaries

C.3 Example of transferring data between dictionaries

All records and elements that were prepared by or revised by user DBA are first
transferred from dictionary TEST to dictionary PROD. Then, according to the
statements below, the user:

1. Signs on to the dictionary TEST and specifies that module PUNCH-ALL is to
receive punched output; the REPLACE verb is used to delete existing source
statements associated with PUNCH-ALL.

2. Punches the desired elements and records, ensuring that subordinate elements
precede group elements. Note that the PUNCH verb output contains the
element/record name and version number only (for example, PUNCH RECORD
A); no other entity-type options appear.

3. Issues a REPLACE verb to delete any existing source statements associated with
the module DECOMPILE (which is to be the default PUNCH destination).

4, Establishes default DISPLAY/PUNCH processing options. By naming REPLACE
as the default verb, the user accommodates record and element definitions that
exist in the production dictionary.

5. Issues an INCLUDE statement that executes the source statements in the module
PUNCH-ALL. This step punches to the module DECOMPILE the detailed syntax
for each element and record being transferred.

At the end of this series of steps, the module DECOMPILE is ready to be transferred
to the dictionary PROD.

signon dictionary name is test.
replace module name is punch-all version is 1.

punch all elements
where prepared by is 'dba' or revised by is 'dba'
to module punch-all version is 1
verb punch
as syntax.

punch all records
where prepared by is 'dba' or revised by is 'dba’
to module punch-all version is 1
verb punch
as syntax.

replace module name is decompile version is 1.
set options for session
punch to module decompile version is 1

display as syntax verb replace.

include module punch-all.

Appendix C. Data Transfer Between Dictionaries C-7

C.4 Completing the data transfer

C.4 Completing the data transfer

Assuming that all dependent entities are already defined in dictionary PROD, the user
completes the data transfer by using the online DDDL compiler, as follows:

1. Issue a DISPLAY MODULE DECOMPILE VERSION IS 1 AS SYNTAX
statement to display the detailed syntax from module DECOMPILE.

2. Retain the displayed syntax, but change the first line of the screen 1/0O areato
SIGNON DICTIONARY NAME IS PROD.

3. Press ENTER to execute the SSIGNON statement.
4. Issue an INCLUDE statement naming the module DECOMPILE.

An alternative method: An alternative method of completing the transfer is to
delete everything in the screen 1/0 area, up to and including the keywords MODULE
SOURCE FOLLOWS, as well as the MSEND statement; only the detailed syntax for
the records and elements being transferred should remain. Then, change the first line
to SIGNON DICTIONARY NAME IS PROD and press ENTER to sign on to and add
each record and element directly to the dictionary PROD.

This method may be preferable in that it requires less space in the dictionary.

C-8 CA-IDMS IDD DDDL Reference

C.5 Transferring in batch mode

C.5 Transferring in batch mode

To accomplish a transfer in batch mode, you can establish the SY SPCH file as the
default PUNCH destination. Following the first batch run, the data set defined to

SY SPCH contains the syntax for adding or replacing the desired entities. After editing
this data set, you complete the transfer by executing another batch job against
dictionary PROD specifying the edited data set as the SY SIPT file.

Appendix C. Data Transfer Between Dictionaries C-9

C-10 CA-IDMS IDD DDDL Reference

Appendix D. Default Version Number Conventions

Appendix D. Default Version Number Conventions D-1

D-2 CA-IDMS IDD DDDL Reference

The table in this appendix lists the default version number conventions used by
CA-IDMS data management components when a reference to an entity occurrence
does not include a version number.

CA-IDMS Action Version selected
component
DML precompilers Highest existing version number
DDL compilers Adding new Highest existing version number plus 1;
records for a newly defined record, version
number is the dictionary default for new
version established by SET OPTIONS
statement or 1
Adding new Dictionary default for existing version
schema records, established by SET OPTIONS statement
using SHARE
STRUCTURE
parameter
Adding new Dictionary default for existing version
schema elements, established by SET OPTIONS statement
using COPY
ELEMENTS

FROM RECORD
syntax

Establishing If the named element does exist, version
element number is 1
ggﬁg;:;ng:ﬁ;g; If the scherng.definition m_atghes the
DDDL definition of an existing element,
elements . . -
current version number is used; if it
does not match, current version number
plus 1 is used
IDD DDDL Adding new Highest existing version number plus 1;
compiler records for a newly defined record, version
number is the dictionary default for new
version established by SET OPTIONS
statement or 1
System generation Creating new Dictionary default for new version

compiler

entity occurrences

established by SET OPTIONS statement
orl

Modifying an
existing entity
occurrence

Dictionary default for existing version
established by SET OPTIONS statement

Appendix D.

Default Version Number Conventions D-3

CA-IDMS Action Version selected
component
Mapping compiler For maps and Highest existing version number; for
panels new maps and panels, version number is
1
CA-OLQ For g-files Highest existing version number
Accessing Highest existing version number; if no
schemas schema name is specified, OLQ selects
first schema under which named
subschema was compiled and uses the
highest existing version number for that
schema
CA-CULPRIT Accessing files, Highest existing version number
modules, schemas
CA-ADS generators 1
(online)
CA-ADS/Batch For ADL routines Highest existing version number
transaction
processor
For transactions 1
CA-ADS/Batch For transactions 1

language trandator

and ADL routines

D-4 CA-IDMS IDD DDDL Reference

Appendix E. IDD User-Exit Program

E.1 Whenauser exitiscalled E-4
E.2 Rulesfor writing the user-exit program E-5
E.3 Control blocks and sample user-exit programs E-7
E.3.1 User-exit control block E-7
E.32 SIGNON Element Block E-7
E.33 SIGNON Block E-8
E.3.4 Entity control block E-8
E.3.5 Card-image control block E-9
E.4 Sample IDD user-exit program E-11

Appendix E. IDD User-Exit Program E-1

E-2 CA-IDMS IDD DDDL Reference

This appendix presents the procedures for coding an IDD user-exit program, which is
called by the DDDL compiler to :

» Perform security checks
® Enforce entity-occurrence naming conventions

® Maintain an audit trail of dictionary activity

Appendix E. IDD User-Exit Program E-3

E.1 When a user exit is called

E.1 When a user exit is called

The IDD user-exit module is called by the DDDL compiler when it encounters any of
these four points:

» SIGNON/SIGNOFF/COMMIT

After the signon procedure is complete and the compiler's security checks have
been passed, or immediately after signoff or COMMIT processing.

» Major command

After an ADD, MODIFY, REPLACE, DELETE, DISPLAY/PUNCH,
INCLUDE/EXCLUDE, or REMOVE request has been issued. The program is
invoked just after the DDDL compiler has identified the entity that is the object of
the request and has successfully checked authorization requirements. Object
entities can be any standard or user-defined entity type; any element, file, or
record synonym, or any record element, COBOL element, or view.

» Card image

After each input statement (card image) is passed to the user-exit control block
after the statement has been:

— Scanned and printed on the Integrated Data Dictionary Activity List
— Displayed at the terminal
— Written to the print file (online DDDL compiler interface only)

The data administrator can build an audit trail of accesses and updates to the
dictionary.

» End of converse

When one of the following occurs, the user can perform a termination activity,
such as a write-to-log:

— The user presses ENTER during an online DDDL session
— A batch run of the DDDL compiler processes a SIGNOFF statement
— A batch run of the DDDL compiler detects an end-of-file condition.

E-4 CA-IDMS IDD DDDL Reference

E.2 Rules for writing the user-exit program

E.2 Rules for writing the user-exit program

This section describes the rules that apply to writing the user-exit program.

Language: You can write the user-exit module in any language that supports OS
calling conventions. However, it is recommended that you write user-exit modules in
Assembler to allow the online DDDL compiler to remain reentrant.

Note: User-exit modules cannot be CA-ADS dialogs.

Versions: You can code and maintain separate versions of user-exit modules for the
batch and online DDDL compilers, or you can code modules that can be executed both
in batch mode and online.

Macros: The user-exit facility supports all CA-IDMS/DC macros for exits to be used
with the online DDDL compiler. For exits to be used with the batch DDDL compiler,
the only CA-IDMS/DC macros supported are: #WTL, #ABEND, #GETSTG,
#FREESTG, #LOAD, and #DELETE; under VSE/ESA, the only valid form of
#DELETE is EPADDR=.

Run units: You can start a run unit within an exit, however you should ensure that
the run unit does not deadlock with the DDDL compiler run unit. If a user-exit run
unit will access a dictionary area, the run unit should ready the object areain a
retrieval usage mode.

Entry point: User-exit modules must have an entry point of IDDUXIT and must be
linked with IDMSDDDL (the batch DDDL compiler) and IDMSDDDC (the
CA-IDMS/DC version of the online DDDL compiler); they will not be loaded
dynamically.

Interface: User exits written in COBOL to run under the online DDDL compiler
require a user-exit interface, written in Assembler with an entry point of IDDUXIT, to
be link edited with IDMSDDDC. This interface should issue a #LINK to the COBOL
program (with an entry point other than IDMSDDDC) to isolate it from IDMSDDDC,
which is storage protected.

Register conventions: User-exit modules are called using the following OS
register conventions:

R15 Entry point of module IDDUXIT
R14 Return address

R13 18 fullword SAVEAREA

R1 Fullword parameter Tist

Parameters 3 and 4: For all four types of user exits, parameter 1 points to a
user-exit control block and parameter 2 points to a SIGNON element block. The
information addressed in parameters 3 and 4 varies based on the type of user exit, as
follows:

Appendix E. IDD User-Exit Program E-5

E.2 Rules for writing the user-exit program

n For the SIGNON/SIGNOFF/COMMIT and end-of-conversation exits, parameter
3 points to a SIGNON block.

» For the major command user exit, parameter 3 points to an entity control block.
» For the card-image user exit, parameter 3 points to a card-image control block.

» For all user exits except the card-image user exit, parameter 4 is reserved for
use by IDD and should be defined as a PIC X(80) field in the user-exit module.

» For the card-image user exit, parameter 4 points to the input card image, which
is defined as a PIC X(80) field.

The user-exit control blocks are described separately later in this appendix.

Information modification: With the exception of the fields identified within the
user-exit control block described below, a user-exit module should not modify any of
the information passed.

Return codes: On return from a user-exit module, the user must set a return code
and, optionally, specify a message ID and message text to be issued by the DDDL
compiler, as follows:

Code IDD action

0 No message is issued; IDD continues with normal processing.

1 An informational message is issued; IDD continues with normal
processing.

4 A warning message is issued; IDD continues with normal processing.

8 An error message is issued; IDD initiates error processing.

E-6 CA-IDMS IDD DDDL Reference

E.3 Control blocks and sample user-exit programs

E.3 Control blocks and sample user-exit programs

This section presents the formats of these five control blocks:

E.3.1 User-exit control block

User-exit control block

SIGNON €element block

SIGNON block

Entity control block

Card-image control block

The following table shows how to define the user-exit control block:

Field Usage Size Picture Description

1 Char 8 X(8) Compiler name: IDMSDDDL

2 Char 8 X(8) Compiler start date: mm/dd/yy

3 Char 8 X(8) Compiler start time: hhmmssmm

4 Binary 4 S9(8) User field initialized to O (for use by

COMP reentrant modules as a pointer to their
work area)

5 Binary 4 gglslf;) User return code (described below)

6 Char 8 X(8) Message ID returned by user, in the range
DC900000 through DC999999, or any
6-digit number; blank if no message is
returned

7 Char 80 X(80) Message text returned by user

E.3.2 SIGNON Element Block

The following table shows how to define the SSIGNON element block:

Field Usage Size Picture Description

1 Binary 1 X Length of user ID for #WTLSs (not
addressable by COBOL)

2 Char 32 X(32) SIGNON user 1D

Appendix E. IDD User-Exit Program E-7

E.3 Control blocks and sample user-exit programs

E.3.3 SIGNON Block

The following table shows how to define the SIGNON block.

Field Usage Size Picture Description
1 Char 16 X(16) IDD SIGNON, SIGNOFF, COMMIT or
END-OF-CONVERSE statement
2 Char 8 X(8) SIGNON dictionary name
3 Char 8 X(8) SIGNON node name
AN CHAR 32 X(32) IDD user ID
4B CHAR 8 X(08) IDD user's hashed password
4C CHAR 1 X(01) Flag 0 (see note)
X'80" compiler running under VSE/ESA
1 X'40' compiler under 'IDD MENU' mode
4D CHAR X(01) Flag 1 (see note)
2 X'80" compiler running in internal
subroutine mode
20 X'40' compiler running under DC
4E CHAR X(02) Reserved for future flags
4F CHAR X(20) Reserved
5 Binary 2 S9(4) DDLDML area usage mode:

COMP 36=UPDATE; 38=PROTECTED
UPDATE; 37=RETRIEVAL

6 Binary 2 S9(4) DDLDCLOD area usage mode
COMP

7 Binary 2 S9(4) DDLDCMSG area usage mode
COMP

8 Binary 10 X(10) Reserved

Note: Each bit in flag 0 and flag 1 must be tested separately. More than one bit may
be on at any one time.

E.3.4 Entity control block

The following table shows how to define the entity control block.

E-8 CA-IDMS IDD DDDL Reference

E.3 Control blocks and sample user-exit programs

Field Usage Size Picture Description
1 Char 16 X(16) IDD command (see list of entity types
and valid commands in the next table)

2 Char 32 X(32) Entity type

3 Char 40 X(40) Entity occurrence

4 Binary 2 S9(4) Entity version number or number of
COMP records requested

5 Char 64 X(64) Additional qualifier: for MODULE, the

40-byte LANGUAGE specification; for
ATTRIBUTE, the 20-byte CLASS NAME

specification
6 Char 32 X(32) PREPARED BY user ID
7 Char 32 X(32) REVISED BY user ID

Valid commands for field 1: The command specified in field 1 can be ADD,
MODIFY, REPLACE, DELETE, DISPLAY, or PUNCH for al entity types except the

following:
Entity type Valid command
ELEMENT SYNONYM, FILE SYNONYM, DISPLAY
RECORD (REPORT) (TRANSACTION) PUNCH
SYNONYM INCLUDE
EXCLUDE
RECORD ELEMENT ADD
MODIFY
REPLACE
REMOVE (ALL)
COBOL ELEMENT ADD
VIEW ID ADD
REMOVE

If the DISPLAY ALL command is specified, field 1 will contain the full input syntax;
field 2 will contain the entity occurrence requested, field 3 will be blank, and field 4
will contain the number of records requested.

E.3.5 Card-image control block

The following table shows how to define the card-image control block:

Appendix E. IDD User-Exit Program E-9

E.3 Control blocks and sample user-exit programs

Field Usage Size Picture Description
1 Char 16 X(16) IDD 'CARD IMAGE' command
2 Binary 2 $9(8) Input low-card column
CoMP
3 Binary 2 $9(8) Input high-card column
COomP

E-10 CA-IDMS IDD DDDL Reference

E.4 Sample IDD user-exit program

E.4 Sample IDD user-exit program

The following sample IDD user-exit program can be used to enforce naming
conventions for elements. The source code for this program can be found in the
installation source library under member name IDDSUXIT.

B o e R R S R S R R S E R L L L

IDDUXIT TITLE ' NAMING CONVENTION CHECKER'

B R R R R e R S R Rk
*

*

* PROGRAM NAME : IDDUXIT

*

* DATE : 03/01/99

*

*

* DESCRIPTION : THIS IS AN EXAMPLE OF AN IDD USER EXIT. THIS

*

* PROGRAM SHOWS HOW A SHOP COULD CHECK THE ENTITY

*

* NAMES FOR A SHOP STANDARD. ANY VIOLATIONS OF

*

* THE NAMING CONVENTION ARE TREATED AS AN IDD ERROR
*

* AND THE ACTION (ADD, MOD, DEL) IS NOT ALLOWED.

*

B o e e R T R S R R E R R L L L e
*

IDDUXIT CSECT

#REGEQU
B R R o R o R
*
* SET UP ADDRESSABILITY
*
B R R o o R o R
*
STM R14,R12,12(R13) SAVE CALLERS REGISTERS
LR R12,R15
USING IDDUXIT,R12
L R4,12(R1) GET THE
L R3,8(R1) CORRECT
L R2,4(R1) PARAMETER
L R1,0(R1) ADDRESSES
*
IDDUXITR DS OH BASE THE CONTROL BLOCKS
*
USING UXITCB,R1 USER EXIT CONTROL BLOCK
MVC UXITRCDE,FO ZERO OUT THE RETURN CODE

MVC UXITMID(8),BLANKS BLANK OUT THE MESSAGE ID
MVC UXITMTXT(80),BLANKS BLANK OUT THE MESSAGE

*
B R L
*

* INTERROGATE THE IDD COMMAND
*
e o ok e ek ok e ko ok ko ko ok ek ko ok ek R ok ek ke ok ek ke
*
SPACE
UXIENTY EQU =
USING UXITECB,R3 ENTITY CONTROL BLOCK

*

Appendix E. IDD User-Exit Program E-11

E.4 Sample IDD user-exit program

CLC UXITEVRB,UXICSON IS IT AN SIGNON?

BE USIGNON YES, CHECK THE USER NAME
*

CLC UXITEVRB,UXICARD IS IT AN CARD IMAGE EXIT?

BE UCARD YES, CHECK THE CARD
*

CLC UXITEVRB,UXICADD IS IT AN ADD?

BE UXIECHK YES, CHECK THE ENTITY-NAME
*

CLC UXITEVRB,UXICMOD IS IT A MODIFY?

BE UXIECHK YES, CHECK THE ENTITY-NAME
*

CLC UXITEVRB,UXICREP IS IT A DELETE?

BE UXIECHK YES, CHECK THE ENTITY-NAME
* NO

MVC UXITMID(8),ELSEID MOVE IN 'ELSE' MESSAGE ID

MVC UXITMTXT(80),ELSEMSG ~ MOVE IN 'ELSE' MESSAGE
BNE UXIEBYE
* YES, CHECK THE ENTITY-NAME

dhhkkkhkhkhkhkhkhkhkhkhhhhhhhkhhhhhhhhhhhhdhhhhhhhhhhhhdhhhhdhdhhhdhdhhhdhhhhdhdhhkhdhdhkhdk
*
* CHECK THE CARD IMAGE
*
dhhkkkhkhkhkhkhkhkhkhkhhhhkhhhhhhhhhhhhhhhdhhhhhhhhdhhhhdhhhhdhhhhdhdhhhdhhhhdhdhhkhdhdhhdkkx
*

SPACE
UCARD EQU =
*

MVC UXITMID(8),CARDID FILL IN THE MESSAGE ID

MVC UXITMTXT(80),CARDMSG FILL IN THE MESSAGE TEXT

B UXIEBYE BACK TO THE LAND OF IDD
*
khhkkkhkhkhkhkhhhhhhhhhhhhhhhdhhdhhdhhhhhhhhdhhdhhdhhhhdhhhhdhdhhhdhdhhhdhdhdhhdhdhdhdhdhdhdhdd
*
* CHECK THE USER NAME FOR ME
*
khhkkkhkhkhkhkhhhhhhhhhhhhhhhdhhdhhdhhhhdhhhhdhhhhdhhhhdhdhhhdhdhdhhdhdhhhdhdhdhhdhdhdhdhdhdhdhdd
*

SPACE
USIGNON EQU =
*

USING UXITSEB,R2 SIGNON ELEMENT BLOCK

USING UXITSB,R3 SIGNON BLOCK
*

CLC UXITUSER(3),WHOME IS IT ME

BE UXIEDC YES GO CHECK FOR DC NAME
* NO, GO TO JAIL, GO DIRECTLY TO
* JAIL, DO NOT PASS GO DO NOT
USNAME ~ EQU = COLLECT $200.

MVC UXITRCDE,F8 FILL IN THE RETURN CODE

MVC UXITMID(8),NOSNID FILL IN THE MESSAGE ID
MVC UXITMTXT(80) ,NOSNMSG FILL IN THE MESSAGE TEXT
B UXIEBYE BACK TO THE LAND OF IDD

E-12 CA-IDMS IDD DDDL Reference

E.4 Sample IDD user-exit program

UXIEDC EQU =

™ UXITFLG1,UXITIDC ARE WE RUNNING DC
BZ UXIEBYE NO, SKIP DC ID CHECK
*
CLC UXITUSER,UXITIUSR IS THE IDD USER THE SAME AS DC
BE UXIEBYE YES, OK LET IT PASS
* NO, DON'T LET THEM SIGNON
MVC UXITRCDE,F8 FILL IN THE RETURN CODE

MVC UXITMID(8),NODCID FILL IN THE MESSAGE ID
MVC UXITMTXT(80),NODCMSG FILL IN THE MESSAGE TEXT

B UXIEBYE BACK TO THE LAND OF IDD
*
e o o e ko ok ek ek ook ko ko ok ek ek ok ko ok ek ke ok ek ek ek
*
* CHECK THE ENTITY-NAME FOR VALID NAMING CONVENTION
*
e o o e o ek ok ek o ko ok o ko ok ek ko ke ko ok ek R ok ek ok ek
*
SPACE
UXIECHK EQU =
USING UXITECB,R3 ENTITY CONTROL BLOCK
*
CLC UXITENME(3),NAMECHK DOES THE NAME FOLLOW THE RULES?
BE UXIEBYE YES, LET THIS ONE PASS.
* NO, RETURN AN ERROR
*
MVC UXITRCDE,F8 FILL IN THE RETURN CODE

MVC UXITMID(8),NONOID FILL IN THE MESSAGE ID
MVC UXITMTXT(80),NONOMSG FILL IN THE MESSAGE TEXT

*

Ihhkh kA AR A A A A A A A hh bk hhhhhhhhhhhhhhhhhddhhddhddhhhhhhhhhhhhhhhrhhrxx
*

* RETURN BACK TO IDD

*

IhhkI kAR A A A A A A hhhhhhhhhhhhhhhhhhhhhddhhddhddhhhhhhhhhhhhhhhrhhrxx
*

SPACE

UXIEBYE

EQU
LM

BR
EJECT

*
R14,R12,12(R13)
R14

RELOAD CALLER'S REGISTERS
RETURN TO CALLER

B R R R R e R S R Rk

CONSTANTS AND LITERALS

B o e e R R S T S R S L R E L L

*

UXICADD
UXICMOD
UXICREP
UXICSON
UXICARD
NAMECHK
WHOME
WKLEN
NONOID
NONOMSG
NOSNID

DC

CL16'ADD

CL16'MODIFY '
CL16'REPLACE '
CL16'SIGNON

CL16'CARD IMAGE '
CL3'XYZ'

CL3'XYZ'

F'100'

CL8'DC999001"

*

CL80O'NAMING CONVENTION VIOLATED - ACTION NOT ALLOWED'

CL8'DC999002'

Appendix E. IDD User-Exit Program E-13

E.4 Sample IDD user-exit program

NOSNMSG DC CL80'SIGNON ERROR - USER NOT ALLOWED ACCESS TO IDD'
NODCID DC CL8'DC999003"

NODCMSG DC CL80O'SIGNON ERROR - IDD USER NAME NOT DC USER NAME'
CARDID DC CL8'DC999004"

CARDMSG DC CL80'MESSAGE PRODUCED BY CARD IMAGE EXIT

ELSEID DC CL8'DC999005"

ELSEMSG DC CL80'MESSAGE PRODUCED BY CARD IMAGE EXIT

BLANKS ~ DC cLso' '

FO DC F'0 NORMAL RETURN CODE - NO ERRORS
F2 DC F'l' INFORMATION MESSAGE
Fa4 DC F'4 WARNING MESSAGE
F8 DC F'8' ERROR MESSAGE
KA KA A A A A A A A A A A A A AR A AR AR AR A A Ak hhhkhhhhhhhhhhhhhhhkhkhhhdhdhhdhkhdhhkhkhkhkhkhdhdhdhd*k
* USER EXIT CONTROL BLOCK *
khhkkkhkhkhkhkhhhhhhhhhhhhhhhhhhhhhhhdhhhhdhhhhdhdhhhdhhhhdhhhhdhdhdhdhdhdhdhhdhdhdhdhdhdhdhdd
UXITCB DSECT
UXITCPLR DS CL8 COMPILER NAME 'IDMSDDDL'
UXITDATE DS CL8 COMPILER START DATE MM/DD/YY
UXITTIME DS CL8 COMPILER START TIME HHMMSSMM
UXITWORK DS F USER FULLWORD INITIALIZED TO 0
UXITRCDE DS OF RETURN CODE RETURNED BY USER

DS XL3 UNUSED
UXITRC DS X
UXITRCOO EQU X'00' NORMAL RETURN CODE - NO ERRORS
UXITRCOL EQU X'O1' INFORMATION MESSAGE
UXITRCO4 EQU X'04' WARNING MESSAGE
UXITRCO8 EQU X'08' ERROR MESSAGE
UXITMID DS CL8 USER MESSAGE ID RETURNED BY USER
UXITMTXT DS CL80 USER MESSAGE TEXT RETURNED BY USER
UXITCBLN EQU *-UXITCB USER EXIT CONTROL BLOCK LENGTH
khhkkkhkhkhkhkhhhhhhhhhhhhhhhdhhdhhhhhhdhhhhdhhhhdhdhhhdhdhhhdhdhhhdhdhdhdhdhdhdhhdhdhdhdhdhdhdhdsd
* USER EXIT SIGNON ELEMENT BLOCK *
KA A KA A A A A A A A A A A A A A AR AR AR A A Ak hhhhkhhhhhhhhkhhhhkhhkhkhhhhdhdhhkhdhdhhkhkhkhhkhdhdhdhdsk
UXITSEB DSECT
UXITIDLN DS X LENGTH OF USERID FOR #WTL'S
UXITUSER DS CL32 USER ID

DS OA ROUND UP TO FULLWORD
UXITSNLN EQU *-UXITSEB LENGTH OF IDD SIGNON ELEMENT
khhkkkhkhkhkhkhhhhhhhhhhhhhhhhhhhhhhhdhhhhdhhhhdhhhhdhhhhdhdhhhdhdhdhdhdhdhdhhdhdhdhdhdhdhdhdsd
* USER EXIT SIGNON BLOCK *
KA A A A A A A A A A A A A A A AR A AR AR AR A A Ak hhhkhhkhhhhhhhhhhhhkhkhkhhhdhdhhdhdhdhhkhkhdhkhkhdhdhdhd*k
UXITSB DSECT
UXITTYPE DS CL16 IDD VERB
UXITDICT DS CL8 DICTIONARY NAME
UXITNODE DS CL8 NODE NAME
UXITIUSR DS CL32 IDD USER ID

E-14 CA-IDMS IDD DDDL Reference

E.4 Sample IDD user-exit program

UXITIPSW DS CL8 IDD USER'S PASSWORD
UXITFLGO DS CLI ENVIRONMENT FLAG
UXITODOS EQU X'80' COMPILER RUNNING UNDER VSE/ESA
UXITOMEN EQU X'40' RUNNING UNDER 'IDD MENU' MODE
UXITFLGL DS CL1 ENVIRONMENT FLAG
UXITILCL EQU X'80" COMPILER RUNNING IN INTERNAL SUBROUTINE MO
UXITIDC EQU X'40' COMPILER RUNNING UNDER DC
DS CL2 RESERVED FOR FUTURE FLAGS
DS CL20 RESERVED
UXITDMLM DS H DDLDML USAGE MODE
* 36=UPDATE
* 37=PROTECTED UPDATE
* 38=RETRIEVAL
UXITLODM DS H DDLDCLOD USAGE MODE
UXITMSGM DS H DDLDCMSG USAGE MODE
DS CL10O RESERVED
UXITSLEN EQU *-UXITSB LENGTH OF USER EXIT SIGNON BLOCK
B R R o o R
* USER EXIT ENTITY CONTROL BLOCK *
ER R R R R R R R R R L R R R R R S R S R S S
UXITECB DSECT
UXITEVRB DS CL16 IDD VERB
UXITENTY DS CL32 IDD ENTITY-TYPE
UXITENME DS CL40 ENTITY NAME
UXITEVER DS H VERSION
UXITEADQ DS CL64 ADDITIONAL QUALIFIER
* CL40 LANGUAGE (ENTITY TYPE = MODULE)
* CL20 CLASS (ENTITY TYPE = ATTRIBUTE)
UXITPREP DS CL32 PREPARED BY USER NAME
UXITREV DS CL32 REVISED BY USER NAME
UXITELEN EQU *-UXITECB LENGTH OF USER EXIT ENTITY CONTROL BLK
EE R R R R R R R R R L R R R R R S R S R R S S
* END OF EXIT *
B R e e R
END

Appendix E. IDD User-Exit Program E-15

E-16 CA-IDMS IDD DDDL Reference

Appendix F. Using the DDDL Compiler as a

Subprogram
F1 Overview F-3
F.2 Compiler interface parameter list F-5
F21 ClOblock F-5
F.22 CIOFblock F-6
F.2.3 User parameters F-7
F.3 Work-areafile F-8
F.4 Sample program that callsIDD F-9

Appendix F. Using the DDDL Compiler as a Subprogram F-1

F-2 CA-IDMS IDD DDDL Reference

F.1 Overview

F.1 Overview

Any program can call the DDDL compiler (IDMSDDDC) as a subroutine to extract
information from or update information in the dictionary. The program or dialog
passes to IDMSDDDC an input file that contains the DDDL statements to be used to
obtain the desired information. The DDDL compiler places the extracted data in an
output file, which can be examined and processed by the program or dialog.

The DDDL compiler uses these files:

®m Aninput file (SYSIPT)

A print file (SYSLST)

® A punch file (SY SPCH)
Each of these files consists of 80-byte records. Normally, the compiler controls these
files, directing the input and print files to the terminal and discarding the punch file.
However, when a program or dialog calls IDMSDDDC as a subroutine, the calling
program specifies that these three files can be directed to a work-area file, a scratch

area, a queue, another program, or a null file. Advantages and disadvantages
associated with each of these storage mechanisms are as shown in the following table.

Storage type Advantagesd/disadvantages

Work-area file Offers the fastest access but is limited in size; this
mechanism is the best choice for small files.

Scratch area Can accommodate a large volume of data; however, scratch
areas are volatile and may require the calling program to
perform 1/Os.

Queue Can accommodate a large volume of data; however, the
calling program must perform I/Os and initiate run units to
access queues.

User program exit Offers the most advantages. The user has maximum control
over the file's records, selecting certain records for specia
processing.

Null file Suppresses the output from IDMSDDDC. If the program
tries to read the null file, an end-of-file condition is returned
immediately.

Combining storage types: It may be advantageous to combine two mechanisms.
For example, direct the file to a user program exit that directs a work area's overflow
to a scratch area. The work area is described under F.3, “Work-area fil€” on

page F-8.

Appendix F. Using the DDDL Compiler as a Subprogram F-3

F.1 Overview

Input file statements: The input file can contain any valid DDDL statements. All
standard compiler security applies to issuing these statements.

First two statements — SIGNON and SET OPTIONS: To ensure proper access
to the compiler, it is recommended that the first two commands in the input file be
SIGNON and SET OPTIONS.

The dictionary named or defaulted to in the SSIGNON command must match the
dictionary being used by the calling program.

You may also wish to specify SET OPTIONS FORMAT IS FIXED because the
resulting columnar format is easier for the calling program to parse. Note, however,
that the columnar format associated with each entity-occurrence definition is subject to
change from release to release. Therefore, the user program should be coded in such a
way as to easily accommodate such changes.

Y ou should ensure that null values are not passed to the DDDL compiler as part of an
entity name; if nulls are present, the compiler will not be able to locate the object
entity.

Last statement — SIGNOFF: When a user program calls the compiler interface,
that program automatically starts a compiler session. Therefore, the last command
passed to the compiler by the program should be a SIGNOFF command. If the
SIGNOFF command is not present in the input file, the compiler interface suspends
the compiler session. If the calling program terminates, the compiler session remains
suspended. If the user then signs on to the compiler from the same logical terminal,
the suspended session is reactivated and any session options established by the calling
program remain in effect; however, the work file has been cleared.

How the compiler is called: To call the DDDL compiler, the user program issues
a LINK request, naming the module IDMSDDDC and passing seven parameters. a
compiler input/output (CIO) block, one compiler input/output file (CIOF) block for
each of the three IDD files (input, print, and punch), followed by a user parameter for
each of the three files (input, print, and punch).

F-4 CA-IDMS IDD DDDL Reference

F.2 Compiler interface parameter list

F.2 Compiler

F.2.1 CIO block

interface parameter list

The CIO block, CIOF block, and user parameters are described separately in this
section.

The CIO block contains return codes that indicate the presence of invalid CIO or CIOF
parameters and specify the outcome of the RETURN operation from the compiler to
the user program. This block aso contains a value that indicates which compiler isin
error. The CIO block is formatted as follows:

Field Label Usage Size Picture Description
1 CloID Char 4 X(4) Compiler 1/0
ID; must be
initialized to
'CIO"
2 CIOUSER Binary 4 $9(8) Reserved for
COMP user storage
(normally, an
address); must
be initialized to
0
3 CIOIORC Binary 4 S9(8) CIO return code
CoMP
4 CIOCMPRC Binary 4 $9(8) Compiler return
CoMP code
5 Char 8 X(8) Reserved
6 CIOERRFI Char 8 X(8) If an error has

occurred, the
name of the file
in error

Error conditions are returned to the calling program as a return code in the CIOIORC
field of the CIO block. These error codes are described as follows:

Appendix F. Using the DDDL Compiler as a Subprogram F-5

F.2 Compiler interface parameter list

Error code

Description

4 (X'04)

An invalid parameter has been passed to the compiler
interface; typically, the CIO or CIOF block has not been

properly initialized.

8 (X'08)

The scratch id or queue id specified in the CIOF block could
not be found.

28 (X'1C)

An 1/O error has occurred during an attempt to access a
scratch area or queue file, or an output work-area file is

exhausted.

The name of the file in error (SYSIPT, SYSLST, or SYSPCH) is placed in the
CIOERRFI field of the CIO block for examination by the user.

F.2.2 CIOF block

For each file, the user program passes a CIOF block. Each CIOF block describes the
type of file being passed (for example, work ared); the number of records to be read
from and written to the file; and the maximum number of records the file can hold.
The format of the CIOF block is as shown in the following table.

Field L abel Usage Size Picture Description
1 CIOFTYPE Char 8 X(8) File type for data block (see
next table)
2 CIOFNAME Char 16 X(16) File name (see next table)
3 CIOFRC Binay 4 S9(8) Program return
COMP code, if file type is
"LINKPGM'/
"LINKEPA'.
4 CIOFZUS Binay 4 $9(8) Number of records read
COMP from or written to file;
updated if file type is
'WORKAREA',
'SCRATCH', or 'QUEUE};
can also be updated by
program if file type is
'LINKPGM'/'LINKEPA'.
5 CIOFSZMX Binay 4 ggh(llg) If file type is

'WORKAREA', maximum
number of records that file
holds (SYSIPT) or can hold
(SYSLST or SYSPCH).

F-6 CA-IDMS IDD DDDL Reference

F.2 Compiler interface parameter list

Fields 1 and 2: The following table provides guidelines for determining file types
and names for fields 1 and 2 of the CIOF block.

File type File name

For a work area initialize to Not applicable

'WORKAREA'

For a scratch area initialize to Scratch area 1D

'SCRATCH '

For a queue initialize to Queue ID

'QUEUE

For a program initialize to If 'LINKPGM' use the 8-character program name

‘LINKPGM ' or 'LINKEPA',

based on the LINK mechanism If 'LINKEPA' use the 4-character entry point

used address
For anull file initiaize to Not applicable
'NULL'

F.2.3 User parameters

Each CIOF block must be followed by a user parameter that specifies the location of
the work-area file within program variable storage or defines the parameter list to be
passed to the user program exit. The user parameters and the information passed in
each are as follows:

Par ameter Information passed
1 CIO block
2 CIOF block for input file
3 If CIOFTYPE='WORKAREA', the work area allocated in

program variable storage; if CIOFTY PE='LINKPGM' or
'LINKEPA', parameter list to be passed to the user exit;
otherwise, this should be the literal 'NULL'

4 CIOF block for the output print file

5 If CIOFTYPE="WORKAREA', the work area alocated in
program variable storage; if CIOFTYPE='LINKPGM' or
'LINKEPA', the parameter list to be passed to the user exit;
otherwise, this should be the literal 'NULL'

6 CIOF block for the output punch file

7 If CIOFTYPE="WORKAREA', the work area allocated in
program variable storage; if CIOFTYPE='LINKPGM' or
'LINKEPA', the parameter list to be passed to the user exit;
otherwise, this should be the literal 'NULL'

Appendix F. Using the DDDL Compiler as a Subprogram F-7

F.3 Work-area file

F.3 Work-area file

The work-area file is a block of program variable storage that contains a series of
80-byte records. The following rules apply to the work-area file:

®» The maximum number of records in the work-area file must be placed in the
CIOFSZMX field of the applicable CIOF block by the user program before the
program invokes the compiler interface.

» The size of the work-area file is determined by the user program; it must be a
multiple of 80.

» |f an compiler output file is exhausted when the work-area file is written to by the
compiler, a return code of 28 (X'1C") is placed in the CIOIORC field of the CIO
block and the excess records are lost.

n |f the compiler file is exhausted when the work-area file is read from by the
compiler, an end-of-file condition is returned to the compiler.

Upon return to the user program, the CIOFSZUS field contains the number of records
actually read from or written to the file.

F-8 CA-IDMS IDD DDDL Reference

F.4 Sample program that calls IDD

F.4 Sample program that calls IDD

The following sample COBOL program calls IDD and requests IDD to display an
element.

Sk ko ko ok ko ko ko ko ko ko ko ko ok ko ko ko ok ko ke ke ok
IDENTIFICATION DIVISION.
S oo e e e e ek e e ek
PROGRAM-ID. CALLIDD.

DATE WRITTEN. MARCH 1, 1999

DATE COMPILED.

B R o S R e T R R R R R R L L L

* REMARKS.

B R

THIS IS A SAMPLE DC COBOL PROGRAM THAT DEMONSTRATES HOW
AN APPLICATION PROGRAM CAN CALL IDD AS A SUBPROGRAM AND
PASS TO IDD A REQUEST TO DISPLAY AN ELEMENT. THE OUTPUT
OF THE REQUEST IS DISPLAYED BY THE COBOL PROGRAM.

* % Sk X X F

e e ok o e ok ko ke ko ko ke ko ko ok e ko ko ok e ko ek ek ok e ok e ok
ENVIRONMENT DIVISION.
FkA TR E KRR T AT R AT AT R AT AT TR AT IR AT TR AT TR K
CONFIGURATION SECTION.

SOURCE-COMPUTER. IBM-370.

OBJECT-COMPUTER. IBM-370.

IDMS-CONTROL SECTION.
PROTOCOL. MODE IS IDMS-DC DEBUG
IDMS-RECORDS MANUAL.

KRAKAIIKAAIA A A A hhhhhhhhhhhhhhhhdhhhddhhddhddhhhhhhhhhhhhhhhhhhrxx

DATA DIVISION.
kkkhkkkkhhkkkhhkkkhkkhkhkkhhkkhhkkhhkhkhhkkkhhkkhkkhkhhkkhhkkhhkkhhkkhhkkhhkkhkkhkhkkkhkkkx
MAP SECTION.

MAP CDSIMAP1.

EJECT
kkkhkkkkhhkkkhkkhkkhkkhkhkkhhkkhhkkhhkkhhkhkkhhkhkhkkhkhhkkhhkkhhkkhhkkhhkkhhkkhkkhkhkkkhkk,x
WORKING-STORAGE SECTION.
Khkkhkhkkhhkhkdhhkhkrhhhhdhhdhrhhhhhhhhhddhhrhdhhdrhdrhhhhkdhhhdrhdhhdhrdx
01 BEGIN-WS.

03 FILLER PIC X(40) VALUE

Vs WORKING STORAGE BEGINS HERE ssswss',

Khkkhkhkkhhkkhhhkhkrhhhhdhhdhrhhhhhhhhhddhhhhdhhdhrhhrhdhhhdhhhdhrhdhhdhrdx
* SWITCHES-AREA - PROGRAM CONTROL SWITCHES x

B R T L

01 SWITCHES-AREA.

03 FILLER PIC X(08) VALUE 'SWITCHES'.
03 IDD-EOF-SW PIC 9 VALUE 0.
88 IDD-EOF VALUE 1.
03 FIRST-TIME-SW PIC 9 VALUE 0.
88 FIRST-TIME VALUE 1.
03 ERROR-SW PIC 9 VALUE 0.
88 NO-ERRORS VALUE 0.
Sk e ko ko ok o ko ko ko ko ko ko ko ko ko ko ok ko ke ek
* WORK-FIELDS - PROGRAM WORK FIELDS *

et e o oo oo o ke ook o e ok ok e o ook oo ok
01 WORK-FIELDS.
03 FILLER PIC X(08) VALUE 'WORKAREA'.
03 SUB PIC 99 VALUE 0.

Appendix F. Using the DDDL Compiler as a Subprogram F-9

F.4 Sample program that calls IDD

03 AID-BYTE PIC X.
88 CLEAR-HIT VALUE '_'.
88 PAL-HIT VALUE 's'.
03 TASK-CODE PIC X(8).
03 GOOD-RC PIC S9(8) COMP VALUE +0.

03 Q-EL PIC X(32) VALUE ALL '?'.

B R R R R R R R R R R T T T T T T

* MESSAGES-AREA - OPERATOR MESSAGES *

hhhkhhhkhhhhhdhddhhdkhhhhhhhhhhhhhhhhrhhdhdrhddhrdrhhhhhhhhhhhhhrx

01 MESSAGES-AREA.

03 FILLER
03 OK-MSG

PIC X(08) VALUE 'MESSAGES'.
PIC X(40) VALUE

'"PROCESSING COMPLETE - PROCEED .

03 NO-ELEMENT-MSG

PIC X(40) VALUE

"ELEMENT NAME MISSING, PLEASE FILL IT IN'.
03 CIO-ERROR-MSG.
05 FILLER PIC X(36) VALUE
'CIO PROCESSING ERROR - RETURN CODE ='.
05 CIO-ERROR-CODE PIC X(4) VALUE '0000'.

B R R R R R e R

x SCR-RCD - SCRATCH RECORD AREA *
EE R R R e R R o R ok o R R Rk R R R o R R R R R R R R R R R R R L R R T
01 SCR-RCD.

03 SCR-DBK PIC S9(8) COMP.

03 SCR-RCDID PIC S9(8) COMP.

03 SCR-STATUS PIC X.

03 SCR-RCD-END PIC X.

EJECT
B R R R R R R R R R R R R R R R R R R R L R L T L T
* PARAMETER 1 - THE COMPILER INOUT/OUTPUT BLOCK *

B R R R o e R R R R R R R T R T T T T T

01 CIO-PARMI1.

03 CIO-ID PIC X(4) VALUE 'CIO '.
03 CIO-USER PIC S9(8) COMP VALUE +0.
03 CIO-IO0-RC PIC S9(8) COMP VALUE +0.

03 CI0-DDDL-RC
03 CIO-RESERVED
03 CIO-ERROR-FILE
88 SYSIPT-ERROR
88 SYSLST-ERROR
88 SYSPCH-ERROR VALUE 'SYSPCH'.
03 CIO-NULL PIC X(4) VALUE 'NULL'.
R R
« PARAMETER 2 - CIOF INPUT BLOCK *
R L R L T L T
01 CIO-PARM2.
03 CIOF-I-TYPE
03 CIOF-I-NAME
03 CIOF-I-F-RC
03 CIOF-I-SIZE-US
03 CIOF-I-SIZE-MAX

PIC S9(8) COMP VALUE +0.
PIC X(8) VALUE SPACES.
PIC X(8) VALUE SPACES.
VALUE 'SYSIPT'.
VALUE 'SYSLST'.

PIC X(8) VALUE 'WORKAREA'.
PIC X(16) VALUE SPACES.
PIC S9(8) COMP VALUE +0.
PIC S9(8) COMP VALUE +0.
PIC S9(8) COMP VALUE +5.

F-10 CA-IDMS IDD DDDL Reference

F.4 Sample program that calls IDD

FRA AT AT R AT AT IR TR AT AT TR AT TR T T AT AT TR K
* PARAMETER 3 - INPUT DATA AREA *
e e ok o ok o ko ko ok ko ko e ko ek o ok e ko ek ok ok e ok e ok
01 CIO-PARM3.
03 FILLER PIC X(80) VALUE
' SIGNON. .
03 FILLER PIC X(80) VALUE
! DISPLAY ELEMENT NAME IS'.
03 CIO-I-LINE2.

05 FILLER PIC X(8) VALUE SPACES.
05 CIO-I-NAME PIC X(32) VALUE SPACES.
05 FILLER PIC X(40) VALUE SPACES.
03 FILLER PIC X(80) VALUE
03 FILLER PIC X(80) VALUE
' SIGNOFF. .
FRA AT AT R AT AT R AT TR AT FET IR AT TR AT TR AT TR K
* PARAMETER 4 - CIOF OUTPUT BLOCK *

R R R R R R R R R R R R R T R R R R R R T L

01 CIO-PARM4.

03 CIOF-0-TYPE PIC X(8) VALUE 'WORKAREA'.

03 CIOF-0-NAME PIC X(16) VALUE SPACES.

03 CIOF-0-F-RC PIC S9(8) COMP VALUE +0.

03 CIOF-0-SIZE-US PIC S9(8) COMP VALUE +0.

03 CIOF-0-SIZE-MAX PIC S9(8) COMP VALUE +100.
e e o oo oo o ko ok e ook ok e oo ok e ook
* PARAMETER 5 - OUTPUT DATA AREA *

B R

01 CIO-PARM5.

03 CIOF-QUTPUT-LINE PIC X(80)
OCCURS 100 TIMES.
EJECT
T L R s
* PARAMETER 6 - CIOF PUNCH BLOCK *

R T L

01 CIO-PARM6.

03 CIOF-P-TYPE PIC X(8) VALUE 'WORKAREA'.

03 CIOF-P-NAME PIC X(16) VALUE SPACES.

03 CIOF-P-F-RC PIC S9(8) COMP VALUE +0.

03 CIOF-P-SIZE-US PIC S9(8) COMP VALUE +0.

03 CIOF-P-SIZE-MAX PIC S9(8) COMP VALUE +0.
e oo oo oo ok ook ok ek ok e ok
* PARAMETER 7 - PUNCH DATA AREA *
ook ok ek ok ko ok ko ko kR ok kR ok kR ko kR ko

01 CIO-PARM7 PIC X(80) VALUE 'NULL'.
e oo oo oo ek e ook ok e ook e ok
* IDMS AREA *

ook ok ek ok ko ke ko ko kR ok ko kR ok ek ko ko kR ko
COPY IDMS SUBSCHEMA-CTRL.
COPY IDMS MAP-CONTROLS.
COPY IDMS MAP-RECORDS.
EJECT
PROCEDURE DIVISION.

Appendix F. Using the DDDL Compiler as a Subprogram F-11

F.4 Sample program that calls IDD

B e R R R R R R L T T T T st L

ROUTINE - 0000-MAIN-LINE

THIS ROUTINE IS THE MAIN CONTROL OF THE PROGRAM, CALLING
THE OTHER ROUTINES TO DO THE ACTUAL WORK.

* Ok F X X X
E R I

Sk e ko ok ok ook o ko ok ko koo ok ok ek ok ko ek ok ke ok ek ok ke
0000-MAIN-LINE.
PERFORM 1000-GET-SCRATCH-REC THRU 1999-EXIT.
IF FIRST-TIME
PERFORM 2000-DISPLAY-MAP THRU 2999-EXIT
GO TO 0800-RETURN-SCREEN.
PERFORM 3000-GET-MAP THRU 3999-EXIT.
IF CLEAR-HIT
GO TO 0900-DC-RETURN.
PERFORM 4000-EDIT-DATA THRU 4999-EXIT.
IF NO-ERRORS
PERFORM 5000-CALL-IDD THRU 5999-EXIT.
MAP OUT USING CDSIMAP1 WAIT IO QOUTPUT DATA YES.

B e e e R T T T T T L
ROUTINE - 0800-RETURN-SCREEN

THIS ROUTINE SETS UP THE RETURN SO THAT THIS TRANSACTION
WILL BE THE NEXT TRANSACTION EXECUTED FROM THE TERMINAL.

* X X X X X
ECEE I I I

Kk AR AT AT F R E T AR F R AT AT FRA AT AT F AT AT F R AT AT F AT AT F R KK
0800-RETURN-SCREEN.

ACCEPT TASK CODE INTO TASK-CODE.

DC RETURN NEXT TASK CODE TASK-CODE.

hhhkhhhhhhhhdhddhhdhhhkhhhhhhhhhhhhhdhhhrdhddhhdhhhhhhhhhhhhhhrx

ROUTINE - 0900-DC-RETURN

THIS ROUTINE DELETES THE SCRATCH RECORD AND THEN RETURNS
CONTROL TO THE DC SYSTEM.

* Ok ok X X X
* Ok kX X X

S e ko ok e o ko ok ok ok ok ko ok ek ok ko ok ek ok ko ek ok ke ok ek ok ko ok
0900-DC-RETURN.

DELETE SCRATCH RECORD ID SCR-RCDID.

DC RETURN.

EJECT

B e e e R S R R R R R T T T T e L

ROUTINE - 1000-GET-SCRATCH-REC.

THIS ROUTINE ATTEMPTS TO GET THE SCRATCH RECORD, WHICH
IS USED TO DETERMINE IF THIS IS THE FIRST TIME THE
TRANSACTION HAS BEEN EXECUTED.

* X X X X X X
ECEE I I I I 3

hhhkhhhkhhhhdhdhddhhkdkhhhhhhhhhhhhhhhhrhhdhdrhddhhdrhhhhhhhhhhhhirx

F-12 CA-IDMS IDD DDDL Reference

F.4 Sample program that calls IDD

1000-GET-SCRATCH-REC.
MOVE 1 TO SCR-RCDID.
GET SCRATCH RECORD ID SCR-RCDID KEEP
INTO SCR-RCD TO SCR-RCD-END
ON ANY-ERROR-STATUS
IF ERROR-STATUS NOT = '0000'
MOVE 1 TO FIRST-TIME-SW
ELSE
MOVE O TO FIRST-TIME-SW.
1999-EXIT.
EXIT.

B R

ROUTINE - 2000-DISPLAY-MAP

THIS ROUTINE CREATES A SCRATCH RECORD AND DOES THE INITIAL
MAP OUT.

* % 3k kX F
* ok F * X *

R R R R R R R R R R R R R T R R R R R R T L

2000-DISPLAY-MAP.

MOVE 0 TO SCR-DBK.

MOVE '1' TO SCR-STATUS.

PUT SCRATCH FROM SCR-RCD TO SCR-RCD-END

RECORD ID SCR-RCDID.

PERFORM 8000-INITILIZE-MAP THRU 8099-EXIT.

MAP OUT USING CDSIMAP1 OUTPUT NEWPAGE.
2999-EXIT.

EXIT.

KRAKAIIAAIA A A A b bk kb hhhhhhhhhhhdhhhddhhdhhddhhhhhhhhhhhhhhhrrhrxx
*

* ROUTINE - 3000-GET-MAP

*

* THIS ROUTINE GETS THE MAP.

*

* F * X X

e e ok o ok o ko ko ke ko ko ok ek o ko ok e ko ek ook ek e ok
3000-GET-MAP.

PERFORM 8000-INITILIZE-MAP THRU 8099-EXIT.

MAP IN USING CDSIMAPI1.

INQUIRE MAP CDSIMAP1 MOVE AID TO AID-BYTE.
3999-EXIT.

EXIT.

EJECT

e ek ko ke ko ko ko ko kR ok kR ok ek Rk kR ko
ROUTINE - 4000-EDIT-DATA

THIS ROUTINE CHECKS THE ELEMENT NAME TO SEE IF IT HAS BEEN
FILLED IN. IF IT IS BLANK OR NULLS, AN ERROR MESSAGE IS
DISPLAYED, AND THE MAP IS RETURNED TO THE OPERATOR FOR
CORRECTION.

* % ok X ok X 3k X
* X X X X X X X

KRAKAIIAAII A A A bbbk hhhhhhhhhhhhdhhdhddhhdhhdhhhhhhhhhhhhhhhhrhhrxx

Appendix F. Using the DDDL Compiler as a Subprogram F-13

F.4 Sample program that calls IDD

4000-EDIT-DATA.
MOVE 0 TO ERROR-SW.
IF (CDSIELNM = SPACES)
OR (CDSIELNM = LOW-VALUES)
MOVE 1 TO ERROR-SW
MOVE NO-ELEMENT-MSG TO CDSIMSG
MOVE Q-EL TO CDSIELNM
MODIFY MAP CDSIMAP1 TEMPORARY
FOR CDSIELNM ATTRIBUTES BRIGHT
GO TO 4999-EXIT.
MOVE CDSIELNM TO CIO-I-NAME.
4999-EXIT.
EXIT.

e S e e oo ok e ook ok e o e ek o e e ok
ROUTINE - 5000-CALL-IDD

THIS ROUTINE CALLS IDD, PASSING THE SEVEN PARAMETERS THAT
ARE REQUIRED. IF THE RETURN CODE FROM IDD IS GOOD (ALL
BINARY ZEROS) THE FIRST TEN LINES FROM THE CIOF OUTPUT
WORKAREA (THE IDD SYSLST FILE) ARE MOVED TO THE MAP.

IF THE RETURN CODE FROM IDD IS BAD (NOT BINARY ZEROS) AN
ERROR MESSAGE IS DISPLAYED WITH THE ERROR CODE.

EE I T R R
EE I I U I R R

R L R T T L T
5000-CALL-IDD.
TRANSFER CONTROL TO 'IDMSDDDC' RETURN
USING CIO-PARM1
CI0-PARM2
CI0-PARM3
CI0-PARMA
CI0-PARMS5
CI0-PARM6
CI0-PARM7.
IF CI0-I0-RC NOT = GOOD-RC
MOVE CI0-I0-RC TO CIO-ERROR-CODE
MOVE CIO-ERROR-MSG TO CDSIMSG
GO TO 5999-EXIT.
PERFORM 5100-MOVE-IDD-OUTPUT THRU 5109-EXIT
VARYING SUB FROM 1 BY 1
UNTIL IDD-EOF.
MOVE OK-MSG TO CDSIMSG.
GO TO 5999-EXIT.
5100-MOVE-IDD-OUTPUT.
MOVE CIOF-OUTPUT-LINE(SUB) TO CDSILINE(SUB).
IF (SUB = 10) OR (SUB = CIOF-0-SIZE-US)
MOVE 1 TO IDD-EOF-SW.
5109-EXIT.
EXIT.
5999-EXIT.
EXIT.

EJECT

F-14 CA-IDMS IDD DDDL Reference

F.4 Sample program that calls IDD

KRAAIIAAIA A A A A bk hhhhhhhhhhhhddhhdhddhhdhhddhhhhhhhhhhhhhhhrhhrxx
*

* ROUTINE - 8000-INITILIZE-MAP

*

+ THIS ROUTINE DOES THE IDMS MAP BINDS.

*

* F * X X

e e ok o ok o o ko ko ok ko ko ok e ko ek o ok e ko ek ook e ok e ok
8000-INITILIZE-MAP.
COPY IDMS MAP-BINDS.
8099-EXIT.
EXIT.
EJECT
COPY IDMS IDMS-STATUS.
IDMS-ABORT.
IDMS-ABORT-EXIT.
EXIT.

Appendix F. Using the DDDL Compiler as a Subprogram F-15

F-16 CA-IDMS IDD DDDL Reference

Appendix G. BS2000/0SD Considerations

G.1 SYSDTA systemfile G-4
G.2 SYSLST systemfile G-5
G.3 SYSOPT system file G-6
G.4 Filereferenceterminology G-7

Appendix G. BS2000/0SD Considerations G-1

G-2 CA-IDMS IDD DDDL Reference

This appendix contains general considerations for running the IDD DDDL compiler
under the BS2000/0OSD operating system.

Appendix G. BS2000/0SD Considerations G-3

G.1 SYSDTA system file

G.1 SYSDTA system file

When the DDDL compiler and syntax converters are executed under the BS2000/0SD
operating system, input statements are read from the SYSDTA system file. Therefore,

whenever SYSIPT is discussed in this manual, the BS2000/OSD user should substitute
SYSDTA for SYSIPT.

G-4 CA-IDMS IDD DDDL Reference

G.2 SYSLST system file

G.2 SYSLST system file

The DDDL compiler directs output to the SYSLST system file. The
ASSIGN-SY SFILE command reassigns the SYSLST system file to a catalogued SAM
file, which allows the output to be edited before printing.

Appendix G. BS2000/0SD Considerations G-5

G.3 SYSOPT system file

G.3 SYSOPT system file

The DDDL compiler directs punch output to the SY SOPT system file. The
ASSIGN-SY SOPT command reassigns the SY SOPT system file to a catalogued SAM
file, which alows the output to be edited before punching. Whenever SYSPCH is
discussed in this manual, the BS2000/OSD user should substitute SY SOPT for

SY SPCH.

G-6 CA-IDMS IDD DDDL Reference

G.4 File reference terminology

G.4 File reference terminology

Terminology used to reference a DMS file is dependent upon the operating system.
BS2000/0SD users should trandate OS/390 file terminology dataset name and ddname
to filename and linkname.

Appendix G. BS2000/0SD Considerations G-7

G-8 CA-IDMS IDD DDDL Reference

Appendix H. Double-Byte Character Set (DBCS)

Strings

H.1 Overview H-3

H.2 Coding DBCSstrings H-4
H.2.1 Assigning graphic literasto VALUE clauses H-4
H.2.2 Defining a graphics literal H-4
H.2.3 Defining mixed literals H-5
H.2.4 Assigning DBCS external picturesto elements H-5
H.2.5 Defining DBCS editing criteriaintables H-6

Appendix H. Double-Byte Character Set (DBCS) Strings H-1

H-2 CA-IDMS IDD DDDL Reference

H.1 Overview

H.1 Overview

You can define data to handle double-byte character set (DBCS) strings in the
dictionary, provided that your terminal has DBCS hardware installed. A double-byte
character set uses two bytes to express a single character. This means that you can
work with nonroman (non-EBCDIC) alphabets, such as the Kanji aphabet used in
Japan or Chinese characters, used in Taiwan.

With DBCS support, you can:

Use DBCS characters in user-supplied variables

Assign a specia type of DBCS string, caled a graphic (G-) literal, to values that
initialize an element or are used in conditional expressions

Assign graphic external pictures to RECORD ELEMENT and COBOL
substatements

Define DBCS data-editing criteria in code and edit tables

Variables for which you can use DBCS: You can code a DBCS character string
for most variables in the DDDL syntax that require the use of quotation marks. The
variables listed below can accommodate DBCS strings:

comment-key
comment-text
condition-value
decode-value
description-text
encode-value
end-value
initial-value
inverse-relational-key

numeric-literal in WHERE clause expressions that do not specify the CONTAINS
or MATCHES options

message-text
password
start-value
user -text

value

You cannot use a DBCS character string for the user ID, dictionary name, node name,
or database name.

Appendix H. Double-Byte Character Set (DBCS) Strings H-3

H.2 Coding DBCS strings

H.2 Coding DBCS strings

To code a DBCS string, follow these steps:

1
2.

5.

Type the site-specific quote character.

Switch the terminal to DBCS. The computer hardware automatically inserts a
shiftout character ([SO]).

Type the double-byte character string.

Switch the terminal to EBCDIC. The computer hardware automatically inserts a
shiftin character ([S1]).

Type the site-specific quote character.

Depending on your terminal hardware, the shift code occupies from one to three bytes.
The shift codes are invisible. However, on an IBM-5550 machine, a shift code
occupies a screen position; on Fujitsu hardware, it does not.

Example: This example uses a double-byte character string in the COMMENTS
clause of the DESTINATION statement.

add destination name is destO1

comments is '[so]dbcs-character string[si]' .

H.2.1 Assigning graphic literals to VALUE clauses

You can assign a specia type of DBCS character string, called a graphic (G-) literal
in the VALUE clause of the following statements:

ELEMENT

RECORD ELEMENT substatement
COBOL substatement

TABLE

MODULE (if the module is a table)

You use G-literals when an element must be interpreted without the shift codes. For
example, CA-ADS will use only the DBCS characters between the shift codes.

H.2.2 Defining a graphics literal

To define a G-literal, code the following for the VALUE clause:

g'[soldbcs characters[si]'.

For example,

add element name is emp-name

value is g'[so]dbcs characters[si]'.

H-4 CA-IDMS IDD DDDL Reference

H.2 Coding DBCS strings

The total number of bytes between the quotes must be less than or equal to 32.
Allocate the following number of bytes for each character:

Char acter Number of bytes
[SO], [9] 1 to 3, depending on your hardware
DBCS character 2 bytes

H.2.3 Defining mixed literals

You can also assign a mixture of EBCDIC and DBCS characters to a VALUE clause.
A literal that contains a combination of characters is called a mixed literal.

To define a mixed literal, code a quoted literal for the VALUE clause. The quoted
literal must include the shift codes before and after the DBCS string. For example,

add element name is emp-name
value is 'jim [so]dbcs characters[si]'.

The total number of bytes between the quotes must be less than or equal to 32. As
shown in the table above, alocate from 1 to 3 bytes for the shift codes, depending
upon your hardware, and 2 bytes for each DBCS character.

H.2.4 Assigning DBCS external pictures to elements

You can define graphic external pictures in the RECORD ELEMENT and COBOL
substatements of the RECORD statement. Y ou define an external picture as graphic
so that the online mapping compiler and CA-OLQ® can format DBCS characters
correctly.

To define an EXTERNAL PICTURE as graphic, code one of the following:
m G(n), where n is an integer that represents the number of DBCS characters

m A 'G for each DBCS character you want to represent

For example, the EXTERNAL PICTURE clauses shown below define a DBCS string
with 4 characters:
record element name is emp-name

usage is display
external picture is g(4) .

record element name is emp-name
usage is display
external picture is gggg .

Example: In this example, you define five elements in record INV-ITEM-RECORD.
Each c in these sample statements represents an actual DBCS character typed in the
definition itself.

add record inv-item-record.

Appendix H. Double-Byte Character Set (DBCS) Strings H-5

H.2 Coding DBCS strings

This value can contain both EBCDIC and DBCS characters.

02 inv-hdr
pic x(15)
value 'invmap - [so]cccc[si]'.
This element can contain DBCS characters only; the external picture is defined by g
(graphics).
02 inv-ctl
pic x(4) ext pic g(2)
value g'[so]cc[si]'.
This element can contain EBCDIC characters only.

02 inv-id
usage is display pic x(10)
ext pic x(10).

H.2.5 Defining DBCS editing criteria in tables
Code and edit tables define data-editing criteria for data. The TABLE statement
supports DBCS characters, as follows:

= You can code G-literals, as described above, for encode-value and decode-value
in the VALUES ARE clause.

= You can use the keyword GRAPHICS in the DATA IS clause. This keyword
specifies that the corresponding values in the value list have to be G-literals.

»» For more information on the TABLE statement, see 4.26, “TABLE” on
page 4-216.

H-6 CA-IDMS IDD DDDL Reference

Index

A

ADD verb 1-5, 4-3
ALTER verb 1-5
APPLY command 5-11, 6-13
area usage modes 2-5
areas 2-24
program use of 4-142
ASF 4-249
ATTRIBUTE statement 4-6, 4-257
attribute/entity relationships 3-38, 4-13
atributes 2-24, 2-27, 3-34, 3-38, 4-16, C-4
authority 4-247

security 2-18
synonyms 2-26
authority

attribute 2-18, 4-11, 4-247

CA-ADS 4-247

CA-CULPRIT 2-17, 4-246

CA-IDMSDB 2-17, 4-142, 4-146

CA-IDMSDC 2-18, 4-18, 4-59, 4-71, 4-78,
4-85, 4-107, 4-112, 4-156, 4-228, 4-247

CA-OLQ 2-17, 4-247

class 2-18, 4-17

class and attribute 4-247

IDD 2-18, 4-25, 4-42, 4-47, 4-92, 4-120, 4-1486,
4-148, 4-209, 4-216, 4-236

IDD signon 2-18

load module 2-18, 4-66, 4-247

password 2-18, 3-7, 4-245, 4-246

update 2-14, 2-16, 2-18, 2-33

AUTHORITY clause 3-7, 3-8, 3-9, 4-245

B
block mode editing 5-12, 6-13
BS2000/0SD
considerations G-3, G-7
DDDL compiler A-15
syntax converters B-5
BS2000/0SD commands
syntax converters B-8

C
CA-ADS
accessto 4-247
compilers 4-141
dialogs 4-66
entities 4-4
process source input 1-13
processes 2-25, 4-92, 4-103, 4-120, 4-127
security 2-17
version numbers D-3
CA-ADS/Batch
applications 4-32
transactions 4-129, 4-145
version numbers D-3
CA-CULPRIT
access 4-251
authority 4-246
file definitions 2-21
files 4-249
headers 2-23, 2-24, 3-17, 3-26
security 2-17
version numbers D-3
CA-IDMS
authority 4-247
CA-IDMS Distributed Database System 4-59
CA-IDMS Mapping Fecility 4-25
CA-IDMS schema compiler 4-25
CA-IDMSDB
security 2-17
subschemas 4-66
CA-IDMS/DB Automatic System Facility
access 4-249
CA-IDMS/DB Distributed Database System 4-66,
4-112
CA-IDMS/DC authority 4-247
CA-OLQ
access privileges 4-250
authority 4-247
entities 4-4
headers 2-23, 2-25
processing control and display options 4-251
gfile access privileges 4-250
dfiles 4-92, 4-103, 4-148, 4-154

Index X-1

CA-OLQ (continued)
security 2-17
version numbers D-3
card-image control block E-9
card-image user exit E-4
Character restrictions 1-8
character string, null 1-8
ClO block F-4
CIOF block F-4
class authority 4-247
class names 1-10
CLASS statement 4-13, 4-257
clasy/attribute clause 3-40, 4-11, 4-16
clasd/attribute structures 3-34
classes 3-38, 4-13, C-4
security 2-18
CLEAR command 5-11
CLEAR key 6-9, 6-17
COBOL
level-88 4-32
COBOL substatement 2-28, 4-163, 4-196
graphic external picture H-5
graphic litera H-4
code and edit tables
DBCS strings H-6
code tables 4-192, 4-202
coding considerations 1-3
command area 6-4
menu facility 6-5, 6-6
online IDD 5-4
command lists 4-92, 4-103
comment keys 1-10, 2-23, 2-27, 3-17, 3-20, 3-35
comment text
concatenating 1-12
editing 3-25
input lines 1-12
line numbers 2-16
nullifying 1-8
comments 2-24, 2-27, 3-17, 4-252
comments clause 3-17, 3-19
COMMIT statement 2-38
COMMIT user exit E-4
compiler, DDDL
security 2-18

continuation character 1-12, 2-21
control key assignments
global 6-8
control keys
global, menu facility 6-8
local, menu facility 6-9
COPY clause 3-24
CREATE verb 1-5
CULL DBA 4-246

D

data transfer procedures C-3
database name tables 4-66
DBCS strings H-3—H-6
coding H-3, H-4
external pictures H-5
GRAPHICS keyword H-6
hardware requirements H-4
in VALUES ARE clause H-4

DC OPTION clause 4-23, 4-64, 4-76, 4-117,

4-143, 4-161, 4-233

DC/UCF

entity types 2-18
security 2-18

tasks 4-233

users 4-248

DC/UCF system
destinations 4-18
entities 4-4

logical terminals 4-71
maps 4-66

messages 4-18, 4-85
physical terminals 4-112
programs 4-129
queues 4-156

DDDL compiler 5-3
batch JCL A-3
character set 1-7
comments 3-44
general syntax options 3-3
input column range 2-21
input format 1-11, 2-9
operations 5-3

output format 2-9
output line size 2-21

X-2 CA-IDMS IDD DDDL Reference

DDDL compiler (continued)

processing options 2-3, 2-8

security 2-18

signon security 4-248

subprogram, asa F-3, F-15

syntax 2-27

text editing, batch 2-8

TSO operations 2-20, 2-21

VM/ESA operations 2-20, 2-21
DDDL compiler, batch 1-3, 1-13, 2-21

carriage control 1-13

input 1-3
DDDL compiler, online 1-3, 5-7, 5-9

error messages 5-7

input 1-3

recovery procedures 5-9
DDL compilers

mapping facility D-3

version number conventions D-3
decimal-point character 2-8, 2-15, 4-37, 4-189,

4-195, 4-204

decode 4-223
defaults 4-4, 6-10
DELETE verb 1-5, 4-3
DESCRIPTION clause 3-16
DESTINATION statement 4-18
destinations 2-24
device types 4-116, 4-117
dictionary

names 2-4

security 2-8, 3-3, 3-7
dispatching priority 4-76, 4-233, 4-243
DISPLAY LINE command 5-11, 6-13
DISPLAY PAGE command 5-11, 6-13
DISPLAY verb 1-5, 1-6, 3-41
DISPLAY/PUNCH OPTIONS statement 2-34
DISPLAY/PUNCH output

default format 2-23, 2-27

default verb 2-27
DISPLAY/PUNCH verb 3-42, 4-3

output options 2-9, 2-19
DISPLAY/PUNCH, examples 3-51
DMCL statement 2-17
DML precompilers 4-47, 4-129, 4-146

version number conventions D-3

double-byte character set strings H-3—H-6
DROP verb 1-5
dump threshold 4-144

E
echo 4-252
EDIT clause 2-16, 2-17, 2-21, 2-29, 3-25
EDIT instruction
input lines 1-13
edit tables 4-191, 4-202
EJECT statement 1-14
element format 4-170
dternative 4-32
primary 4-32
element name 1-10
element picture 4-187
element prefixes/suffixes 4-172
ELEMENT statement 4-25
graphic literals H-4
ELEMENT SYNONYM statement 4-40
element synonyms 2-26, 4-25, 4-31, 4-35, 4-141,
4-187, 4-200
element-to-element relationships 2-26, 3-33
clements 2-24, 2-27
dternative formats 2-8, 2-16, 4-25
deleting 2-15
elementary 4-25, 4-33
group 4-25,4-34
multiply-occurring 4-25, 4-35
redefining 4-25, 4-35
subordinate 2-26, 4-25, 4-33, 4-34, 4-35, 4-178,
4-187
version numbers D-3
encode 4-223
END command 5-11, 6-13
end-of-converse user exit E-4
end-of-file indicator 2-9, 5-7
ENTER command 5-11, 6-13
ENTER key 6-9
entities
standard 1-6
user-defined 4-257
entity control block E-8
entity occurrence
creation 4-3

Index X-3

entity occurrence (continued)
definitions 2-24
definitions, copying 3-22, 3-24
deletion 4-3
description 2-24
display 3-3, 3-41
documentation 3-3, 3-16
history 2-24
identification 3-3, 3-4
listing 4-3
maintenance conventions 2-8
manipulation 3-3, 3-22
modification 4-3
names 1-6, 3-4
naming conventions E-3
relationships 2-26, 3-3, 3-33
security 2-18, 3-7, 3-13
transfer procedures C-4
version numbers 3-4
entity type
name 1-6
security 2-17, 3-7
standard 1-6
synonym 1-6
syntax 4-3
entity types 2-18
ENTRY POINT statement 4-41
entry points 2-24
ERASE instruction 3-29
Error Display screen 6-10
error messages 1-3
DDDL compiler, online 5-7
online descriptions 5-8
ESCAPE command 5-11, 5-12, 6-13
expressions
conditional 3-46
external pictures 4-192, 4-202, 4-253, H-5
EXTERNAL WAIT IS clause 4-233

F

FILE statement 4-46, C-4

FILE SYNONYM statement 4-57

file synonyms 2-26, 4-54, 4-172
file-to-file relationships 2-26, 3-33, 4-54

files 2-24, 2-27, 4-47
CA-CULPRIT definitions 2-9
external names 4-142
program use of 4-142

filler 4-252

filler fields 4-35, 4-193, 4-203

FIND command 5-11, 6-13

fixed screens 6-4

G
G-litera
See graphic literal
graphic litera H-6
externa picture H-5
in VALUES ARE clause H-4
GRAPHICS keyword H-6

H

HELP 6-9

HELP command 5-11, 5-14, 6-13
HELP DC command 5-8
highlighting 6-10

I
IDD
authority 4-247
IDD menu facility
See menu facility
IDMSDDDL A-3
IDMSIDDC B-3, B-4
IDMSIDDP B-3, B-6
INCLUDE statement 2-36, C-3
Information Center Management System (ICMYS)
access 4-249
input buffer 4-234
input column range 1-11, 2-21
INSERT command 5-11, 6-13
INSERT instruction 3-28
Integrated Data Dictionary Activity List 1-3, 2-21
interrupt 4-252
INVERSE KEY parameter 3-36

X-4 CA-IDMS IDD DDDL Reference

J
JCL
DDDL compiler A-3
syntax converters B-3
journal 4-234

K

keywords
abbreviations 1-10
dternate picture 1-10, 2-8, 2-16
optional 1-10
required 1-10

L

LANGUAGE class 3-38, 3-39, 4-10, 4-99, 4-103,
4-125, 4-127, 4-144, 4-152, 4-154, 4-171, 4-172,
4-222

level numbers 2-9, 2-22

level-88 4-32, 4-33, 4-188, 4-200

line commands 5-12—5-13

syntax 5-13

line numbers 2-16, 3-25

LINE statement 4-58

lines 2-24, 4-59, 4-112

LIST instruction 3-31

LOAD MODULE

security 2-18

load module authority 4-247

LOAD MODULE statement 4-65

load modules 4-66, A-5, A-6

logical operators 3-46

logical records 4-143

LOGICAL TERMINAL statement 4-70

logical terminals 2-24, 4-71, 4-112

as destinations 4-18
LOGICAL-TERMINAL statement 4-117

M

major command user exit E-4
map records 4-174
MAP statement 4-77, 4-107
map-owned records

See record elements, map-owned

map/program relationships 4-141
maps 2-25, 4-78, 4-107
version numbers D-3
Master Selection screen 6-15
menu facility 6-3, 6-44
adding entity occurrences 6-19
control keys 6-8
cursor positioning 6-9
deleting entity occurrences 6-20
displaying entity occurrences 6-19
dissociating definitions 6-20
EXCLUDE 6-20
field highlighting 6-10
fixed screens 6-4
line commands 6-13
modifying entity occurrences 6-19
OPTI (Session Options) screen 6-16
pageable screens 6-5
PF-key simulation 6-9
screens, selecting 6-17
screens, using 6-8
session beginning 6-15
session termination 6-20
message field 6-10
message line 6-5, 6-6
MESSAGE statement 4-84
messages 4-85
mixed literal H-5
MODE class 3-39, 4-10, 4-171
MODIFY ENTITY statement 3-34
MODIFY verb 1-5, 4-3
module source 2-21
displaying 2-25
editing 3-25
input 1-13
line numbers 2-16
MODULE statement 4-92
graphic literal H-4
Module/map cross-reference clause 4-83
modules 2-25, 2-27, 4-92, 4-120, 4-141, 4-148,
4-216

N

NAME clause 3-4

Index X-5

node name 2-5 processing options (continued)
for the current session 2-14

@) overriding 2-32
program

entry points 4-42
program entry points 4-140
program function keys

See PF keys
program remarks 2-26, 3-17, 3-26
PROGRAM statement 4-47, 4-128, C-4

online commands 5-10
OnLine Query
headers 3-17, 3-26
OPTI (Session Options) screen 6-16
output line size 2-21

P program-to-program relationships 2-25, 3-33
PAlkey 6-9 programs 2-25, 2-27
PA2 key 6-9 Assembler 4-144
PAGE GROUP statement 2-17 COBOL B-4
pageable screens DC/UCF 4-143
global control keys 6-9 pPL/l B-7
PANEL (SCREEN) statement 4-107 registration of 2-17, 4-142
panels 2-25, 4-78, 4-107 undefined 2-17, 4-146
version numbers D-3 PUBLIC ACCESS clause 3-8, 3-13
password authority 4-246 PUNCH C-3
passwords 2-4, 2-18, 3-7, 4-245 output destination 2-20
PF keys PUNCH verb 1-5, 3-41

onlineIDD 5-14
simulating 6-9
PF-key simulation

menu facility 6-4, 6-9 ofiles 225, 2-26

source input 1-13

PF1 key 6-9 version numbers D-3
PF7 key 6-9 file
PF8 key 6-9 |

access 4-250
QFILE statement 4-92, 4-148
QUEUE statement 4-155
gqueues 2-26

DC/UCF system 4-156
guote character

default 1-9

in user-supplied names 1-9

site-standard 1-9, 2-8, 2-15

physical terminals 2-25, 4-71
PHYSICAL-TERMINAL statement 4-59, 4-111
picture 4-173, 4-199

picture specifications 2-25

pictures 1-10, 4-32, 4-33

pointer 4-188, 4-200

precompilers, DML 4-47

PREPARED BY clause 3-8

PREPARED BY specification 2-14, 2-18
PREPARED BY/REVISED BY clauses 4-245

PREPARED/REVISED BY clause 3-8 R

PRINT command 5-11 record element

printer classes 4-117 level numbers 2-22

PROCESS statement 4-92, 4-120 line numbers 2-16

processing options RECORD ELEMENT substatement 4-103, 4-163,
default 2-8, 2-29, 2-30 4-183, 4-226
displaying 2-34 graphic externa picture H-5

X-6 CA-IDMS IDD DDDL Reference

RECORD ELEMENT substatement (continued) security (continued)

graphic litera H-4 CA-CULPRIT 2-17, 4-249
record elements 2-9, 2-24, 2-25, 2-26, 4-163, CA-IDMS 2-17
4-183, 4-196 CA-IDMSDB 4-142, 4-146
deleting 4-174 CA-IDMS/DC 2-17, 4-18, 4-59, 4-71, 4-78,
map-owned 4-174, 4-176 4-85, 4-107, 4-112, 4-156, 4-228
replacing 4-173 CA-OLQ 2-17, 4-249
schema-owned 4-173, 4-174, 4-176, 4-182 class and attribute 2-17, 4-11, 4-17
record name 1-10 dictionary 2-8, 3-3, 3-7
RECORD statement 4-47, 4-163, 4-164 entity occurrence 2-18, 3-7, 3-13
RECORD SYNONYM statement 4-207 entity type 2-17, 3-7
record synonyms 2-26, 4-141, 4-171, 4-207 IDD 2-4, 2-17, 4-25, 4-42, 4-47, 4-92, 4-120,
record views 4-141, 4-163 4-146, 4-148, 4-173, 4-209, 4-216, 4-236
records 2-26, 2-27 IDD signon 2-4, 2-17, 2-18
See also record elements load module 2-17, 4-66
defining 4-163 password 3-7
deleting 2-15 SET OPTIONS 2-8
program use of 4-143 through IDD user exits E-3
rebuilding 4-177, 4-178 security classes 4-248
version numbers D-3 SEQUENCE instruction 2-17, 3-31
relational keys 2-27, 3-19, 3-34 session
inverse 3-36 menu facility 6-15
relational-key clause 3-34, 3-36, 4-10, 4-100, online IDD 5-6
4-126, 4-153, 4-171, 4-223, 4-262 SET OPTIONS statement 1-9, 1-11, 2-3, 2-4, 2-8,
REPEAT command 5-11, 6-13 3-7
repeating lines functions 2-8
See REPEAT installation defaults 2-29
REPLACE instruction 3-29 security 2-33
REPLACE verb 1-5, 4-3 syntax 2-9
REPORT statement 4-163 sets 2-26, 4-143
reports 4-163 shiftin/shiftout character H-4
RESHOW command 5-11 SHOW instruction 2-16, 3-32
Restrictions on characters 1-8 Siemens
REVISED BY clause 3-8 See BS2000/0SD
REVISED BY specification 2-15, 2-18 SIGNOFF statement 2-3, 2-7
SIGNOFF user exit E-4
S SIGNON block E-8

SIGNON element block E-7
signon procedure 2-18

signon profiles 4-92, 4-148, 4-247
signon dfiles 4-249

SIGNON statement 2-3, 2-4, 4-245
SIGNON user exit E-4

simulated PF keys 6-4

SAME AS clause 3-22, 4-170
schema control field 4-174
schema-owned records

See record elements, schema-owned
schemas 2-26
screen name 6-17
security 2-18

CA-ADS 2-17

Index X-7

simulated PF-key field 6-9
SKIP statement 1-14
subroutine F-3
subschema

access 4-249
subschemas

displaying 2-26

program use of 4-142
SUSPEND command 5-11, 6-13
SWAP command 5-11
SWITCH command 5-11, 6-13
synonyms 1-6

dement 4-25, 4-35, 4-40, 4-141, 4-187, 4-200

entities 1-6

file 4-54, 4-57, 4-172

record 4-141, 4-171, 4-207
Synonyms for verbs 1-5
syntax

analysis 1-10

coding considerations 4-4

entity type 4-3

format 1-4

optional clauses 1-6
syntax converters

COBOL B-3

PL/I B-3
system generation compiler

entities defined with 4-3

version number conventions D-3
system messages 6-10
SYSTEM statement 4-209, C-4
system-to-system relationships 2-27, 3-33
system/entity relationships 3-33
systems 2-26, 2-27

T
TABLE statement 4-92, 4-101, 4-102,
4-216—4-227
graphic literal H-4
GRAPHICS keyword H-6
table/map cross-reference clause 4-83
tables 2-25, 2-27
built-in 4-103, 4-226
code 4-66, 4-92, 4-101, 4-102, 4-216—4-227
edit 4-66, 4-92, 4-101, 4-102, 4-216—4-227

tables (continued)
generating 4-102, 4-225
stand-alone 4-103, 4-226
TASK statement 4-228
tasks 2-27
terminal-key functions
See PF keys
TEXT clause 3-20
text editor
full screen 5-3
text-editing commands 5-12
top-line commands 5-10
TRANSACTION statement 4-163
Transaction Summary 1-3
transactions 4-163
transfer control facility (TCF) 5-6

U

UPDATE command 5-11, 6-13
user authority 2-14, 2-16, 2-18, 2-33, 3-7, 3-9
USER clause 3-8, 3-10, 3-33
user exits

card image E-3

COBOL considerations E-5

end of conversation E-3

major command E-3

SIGNON/SIGNOFF/COMMIT E-3
USER statement 3-9, 4-235, C-4
user-defined entities 2-27

security 2-18
user-defined entity authority 4-247
user-defined entity statement 4-257
user-defined nests 1-10
user-defined variables

DBCS strings H-3
user-supplied names 1-10
user-supplied record 1-10
user-supplied values 1-10
user-to-user relationships 2-27, 3-33
user/entity relationships 3-33
user/system relationships 4-245
users 2-27

as destinations 4-18

multiple 3-13

names 2-4

X-8 CA-IDMS IDD DDDL Reference

users (continued)
registering 3-10
responsibility 3-10
unregistered 3-13

V
VALUES ARE clause H-4
verb 1-5
Verb synonyms 1-5, 4-4
VERSION clause 3-4
version number 4-203, 4-214
version numbers
default 2-9, 2-22, 3-5, D-3
specifying 3-4
VIEW ID substatement 4-141
VM/ESA
See VM/ESA commands
VM/ESA commands
DDDL compiler A-13
syntax converters B-3, B-5, B-8

W

WHERE clause 3-47, 3-48

WITHIN SYSTEM clause 3-33, 4-22, 4-64, 4-75,
4-83, 4-100, 4-117, 4-126, 4-140, 4-153, 4-160,
4-214, 4-223, 4-232

Index X-9

	CA-IDMS IDD DDDL Reference
	Contents
	How to Use This Manual
	What this manual is about
	Who should use this manual
	How information is presented
	Related manuals
	Understanding syntax diagrams
	Sample syntax diagram

	Chapter 1. Coding Considerations
	1.1 Overview
	1.2 Syntax format
	1.3 Character set restrictions
	1.4 Keywords and user- supplied names
	1.5 Input column range
	1.6 Comment text, source statements, and edit instructions
	1.6.1 Comment text
	1.6.2 Source statements
	1.6.3 Edit instruction text

	1.7 Batch considerations
	1.7.1 User comments
	1.7.2 Carriage control statements

	Chapter 2. DDDL Compiler Options
	2.1 Overview
	2.2 SIGNON statement
	2.3 SIGNOFF statement
	2.4 SET OPTIONS statement
	2.4.1 SET OPTIONS functions
	2.4.2 SET OPTIONS syntax
	2.4.3 SET OPTIONS defaults and overrides
	2.4.4 SET OPTIONS security

	2.5 DISPLAY/ PUNCH OPTIONS statement
	2.6 INCLUDE statement
	2.7 COMMIT statement

	Chapter 3. General DDDL Syntax Options
	3.1 Overview
	3.2 Identifying entity occurrences
	3.2.1 NAME clause
	3.2.2 VERSION clause
	3.2.3 Additional qualifiers

	3.3 Securing the dictionary
	3.3.1 PREPARED/ REVISED BY clause
	3.3.2 AUTHORITY clause
	3.3.3 USER clause
	3.3.4 PUBLIC ACCESS clause

	3.4 Documenting entity occurrences
	3.4.1 DESCRIPTION clause
	3.4.2 COMMENTS clause
	3.4.3 TEXT clause

	3.5 Copying and editing entity occurrences
	3.5.1 SAME AS clause
	3.5.2 COPY clause
	3.5.3 EDIT clause
	3.5.4 INSERT instruction of the EDIT clause
	3.5.5 ERASE instruction of the EDIT clause
	3.5.6 REPLACE instruction of the EDIT clause
	3.5.7 LIST instruction of the EDIT clause
	3.5.8 SEQUENCE instruction of the EDIT clause
	3.5.9 SHOW instruction of the EDIT clause

	3.6 Associating entity occurrences
	3.6.1 Relational keys
	3.6.2 Attribute/ entity relationships

	3.7 Displaying entity occurrences
	3.7.1 DISPLAY/ PUNCH statement
	3.7.2 DISPLAY/ PUNCH ALL statement
	3.7.3 WHERE clause (conditional expressions)
	3.7.4 DISPLAY/ PUNCH examples

	Chapter 4. Entity- Type Syntax
	4.1 Overview
	4.2 Considerations for syntax presentation
	4.3 ATTRIBUTE
	4.4 CLASS
	4.5 DESTINATION
	4.6 ELEMENT
	4.7 ELEMENT SYNONYM
	4.8 ENTRY POINT
	4.9 FILE
	4.10 FILE SYNONYM
	4.11 LINE
	4.12 LOAD MODULE
	4.13 LOGICAL TERMINAL
	4.14 MAP
	4.15 MESSAGE
	4.16 MODULE (PROCESS/ QFILE/ TABLE)
	4.17 PANEL (SCREEN)
	4.18 PHYSICAL TERMINAL
	4.19 PROCESS
	4.20 PROGRAM
	4.21 QFILE
	4.22 QUEUE
	4.23 RECORD (REPORT/ TRANSACTION)
	4.23.1 RECORD statement
	4.23.2 RECORD ELEMENT substatement
	4.23.3 COBOL substatement
	4.23.4 REMOVE ALL substatement
	4.23.5 VIEW ID substatement

	4.24 RECORD SYNONYM
	4.25 SYSTEM (SUBSYSTEM)
	4.26 TABLE
	4.27 TASK
	4.28 USER
	4.29 USER- DEFINED ENTITY

	Chapter 5. Online DDDL Compiler
	5.1 Overview
	5.2 Screen format
	5.3 Online sessions
	5.3.1 Beginning a session
	5.3.2 Conducting an online session
	5.3.3 Terminating a session
	5.3.4 Recovering a session

	5.4 Online commands
	5.4.1 Top- line commands
	5.4.2 Line commands

	5.5 Program function keys assigned to operations

	Chapter 6. IDD Menu Facility
	6.1 Overview
	6.2 Screen formats
	6.2.1 Fixed screens
	6.2.2 Pageable screens

	6.3 Using menu facility screens
	6.3.1 Predefined control keys
	6.3.2 Cursor positioning
	6.3.3 Message display and field highlighting
	6.3.4 Default value assignment
	6.3.5 Help screens

	6.4 Online commands
	6.4.1 Top- line commands
	6.4.2 Line commands

	6.5 Conducting a menu facility session
	6.5.1 Beginning a session
	6.5.2 Navigating screens
	6.5.3 Displaying entity occurrences
	6.5.4 Adding entity occurrences
	6.5.5 Modifying entity occurrences
	6.5.6 Deleting entity occurrences
	6.5.7 Terminating a session

	6.6 Descriptions of IDD menu facility screens
	6.6.1 Entry and processing screens
	6.6.2 Screens common to all entity types
	6.6.3 ATTRIBUTE entity screens
	6.6.4 CLASS entity screens
	6.6.5 ELEMENT entity screens
	6.6.6 FILE entity screens
	6.6.7 MESSAGE entity screens
	6.6.8 MODULE entity screens
	6.6.9 PROCESS entity screens
	6.6.10 PROGRAM entity screens
	6.6.11 QFILE entity screens
	6.6.12 RECORD entity screens
	6.6.13 SYSTEM entity screens
	6.6.14 TABLE entity screens
	6.6.15 USER entity screens

	6.7 Sample session

	Appendix A. DDDL Compiler Batch Execution JCL
	A. 1 IDMSDDDL under OS/ 390
	A. 2 IDMSDDDL under VSE/ ESA
	A. 3 IDMSDDDL under VM/ ESA
	A. 4 IDMSDDDL under BS2000/ OSD

	Appendix B. Syntax Converters for COBOL and PL/ I
	B. 1 IDMSIDDC (COBOL converter)
	B. 1.1 Under OS/ 390
	B. 1.2 Under VSE/ ESA
	B. 1.3 Under VM/ ESA
	B. 1.4 Under BS2000/ OSD

	B. 2 IDMSIDDP (PL/ I converter)
	B. 2.1 Under OS/ 390
	B. 2.2 Under VSE/ ESA
	B. 2.3 Under VM/ ESA
	B. 2.4 Under BS2000/ OSD

	Appendix C. Data Transfer Between Dictionaries
	C. 1 Overview
	C. 2 Steps for data transfer
	C. 3 Example of transferring data between dictionaries
	C. 4 Completing the data transfer
	C. 5 Transferring in batch mode

	Appendix D. Default Version Number Conventions
	Appendix E. IDD User- Exit Program
	E. 1 When a user exit is called
	E. 2 Rules for writing the user- exit program
	E. 3 Control blocks and sample user- exit programs
	E. 3.1 User- exit control block
	E. 3.2 SIGNON Element Block
	E. 3.3 SIGNON Block
	E. 3.4 Entity control block
	E. 3.5 Card- image control block

	E. 4 Sample IDD user- exit program

	Appendix F. Using the DDDL Compiler as a Subprogram
	F. 1 Overview
	F. 2 Compiler interface parameter list
	F. 2.1 CIO block
	F. 2.2 CIOF block
	F. 2.3 User parameters

	F. 3 Work- area file
	F. 4 Sample program that calls IDD

	Appendix G. BS2000/ OSD Considerations
	G. 1 SYSDTA system file
	G. 2 SYSLST system file
	G. 3 SYSOPT system file
	G. 4 File reference terminology

	Appendix H. Double- Byte Character Set (DBCS) Strings
	H. 1 Overview
	H. 2 Coding DBCS strings
	H. 2.1 Assigning graphic literals to VALUE clauses
	H. 2.2 Defining a graphics literal
	H. 2.3 Defining mixed literals
	H. 2.4 Assigning DBCS external pictures to elements
	H. 2.5 Defining DBCS editing criteria in tables

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

